Kireçli ana materyal üzerinde oluşmuş bir toprakta iyot adsorpsiyonu ve desorpsiyonu

İnsan sağlığı üzerinde önemli etkisi bulunan çoğunlukla da topraklarda yetersizliğinde guatr hastalığına yol açan iyodun topraktaki davranışlarının araştırıldığı bu çalışmada, kireç ana materyalli bir toprakta iyodun adsorpsiyonu ve desorpsiyonuna toprak bileşenlerinden; organik madde, kireç, serbest Fe/Al oksitlerin etkileri araştırılmıştır. Toprak bileşenleri tek tek ve birlikte giderilmiş topraklarda Langmuir ve Freundlich adsorpsiyon izotermleri uygulanmıştır. Adsopsiyon sıralaması ve maksimum adsorpsiyon değerleri; Fe/Al giderilmiş toprak (29,3 mg kg-1) > İşlem görmemiş toprak (19,3 mg kg-1) > hepsi giderilmiş toprak (15,4 mg kg-1) > organik maddesi giderilmiş toprak (10,5 mg kg-1) >kireci giderilmiş toprak (4,5 mg kg-1) şeklinde sıralanmıştır. Toprak bileşenlerinin etkisi Duncan’a göre önemli bulunmuştur. Desorpsiyon oranı sıralaması ise; kireci giderilmiş toprak > işlem görmemiş toprak > hepsi giderilmiş toprak > Fe/Al giderilmiş toprak > organik maddesi giderilmiş toprak şeklinde sıralanmıştır. Araştırma sonuçlarından adsorpsiyonda kirecin, desorpsiyonda da organik maddenin daha etkin olduğu görülmüştür

Iodine adsorption and desorption in a soil formed on lime parent material

This study focuses on the behavior of iodine in the soil, which has an important effect on human health and which leads to goiter if deficient in the soil. Impacts of organic matter, lime, and free Fe/Al oxides on adsorption and desorption of iodine in the soil containing lime as the main substance are examined in this study. In order to study iodine adsorption and desorption in soil, we used Langmuir and Freundlich models in a calcareous soil before and after the removal of chemically active soil components, organic matter, lime and free Fe/Al oxides. The results indicated following order of adsorption and respective maximum adsorption values: soil deprived of Fe/Al (29,3 mg kg-1) > unprocessed soil (19,3 mg kg-1) > soil deprived of all (15,4 mg kg-1) > soil deprived of organic substance (10,5 mg kg-1) > decalcified soil (4,5 mg kg-1). The impact of soil components is found significant according to Duncan Test. With respect to desorption rates, the results were as follows: decalcified soil > unprocessed soil > soil deprived of all > soil deprived of Fe/Al > soil deprived of organic matter. According to these results, lime proved to have a greater effect on adsorption, with organic matter creating the greatest effect on desorption

___

  • Borggaard OK. 1983. The Influence of Iron Oxides on Phosphate Adsorption by Soil. Europen J. Soil Sci, 34(2); 333–341.
  • Bors J, Martens R. 1992. The contribution of microbial biomass to the adsorption of radioiodide in soils. J. Environ. Radioact. 15 35–49.
  • Christiansen JV, Carlsen L. 1989. Iodine in the environment revisited. An evaluation of the chemical and physico chemical processes possibly controlling the migration behaviour of iodine in the terrastial environment Chemistry Department, RisØNational Laboratory DK-4000 Roskilde, Denmark.
  • Da JL, Zhang M, Zhu YG. 2004. Adsorption and desorpsion of iodine by various Chinese soils: I. Iodate. Environ. Inter. 30(4); 525-530.
  • Elrashidi MA, O'Connor GA. 1982. Boron sorption and desorption in soils. Soil Sci. Soc. Am. J. 46; 27-31.
  • Fuge R. 2005. Soil and iodine deficience. Essential of Medical Geology, Impact of the Natural Environment on Public Health (Ed.O.Selinus). Academic Press, Vol.16; pp.417-433.
  • Fukui M, Fujikawa Y, Satta N. 1996. Factors affecting interaction of radioiodide and iodate species with soil. J. Environ. Radioact, 31; 199-216.
  • Gee GW, Or D. 2002. Particle-Size Analysis. In Methods of Soil Analysis. Dane and Topp (ed). Part 4. Physical Methods. p. 255- 294. SSSA Book Ser. 5. SSSA Madison, WI.
  • Ghanbari A, Maftoun M, Karimian N. 1998. Phosphorus Adsorption Desorption Characteristics of Some Selected Highly Calcareous Soil of Fars Province. Iranian J. Agri. Sci, 29(1); 181–194.
  • Hartge KH. 1971. Die Physikalische Untersuchung Von Böden. Enke Verlag Stuttgart. pp. 31–50.
  • Hosseini S, Usta S. 2000. Kastamonu-Azdavay Yöresinde Yaygın Toprakların ve Su Kaynaklarının iyot Durumları. Tarım Bilimleri Dergisi; 6(4); 87-91.
  • Jackson ML. 1958. Soil Chemical Analysis. Prentice-Hall. Inc. Eng. Cliffs. New Jersey, USA.
  • Jackson ML. 1962. Soil Chemical Analysis. Prentice-Hall. Inc. Eng. Cliffs. N. J., USA.
  • Johanson KJ. 2000. Iodine in soil. Department of Forest Mycology and Oarthology, The Swedish University of Agricultural Science, Uppsala, Technical Report TR-00-21.
  • Johnson CC, Fordyce FM, Stewart AG. 2003. Environmental Controls in Iodine Deficiency Disorders. Project Summary Report Environmental controls in Iodine Deficiency Disorders Project Summary Report. British Geological Survey Commissioned Report. CR/03/058N.BGS, Keyworth, Nottingham, UK.
  • Keren R, Bingham FT. 1985. Boron in Water, soil and plants. Adv. Soil Sci. 1; 229-276.
  • Kunze GW, Dixon JB. 1986. Pretreatment for Mineralogical Analysis. In: Klute, A. (Ed.), Methods of Soil Analysis. Part 1, second ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, pp. 91-99.
  • Langmuir I. 1918. Adsorption of Gases on plane surfaces of Glass. Mica and Platinum. J. Amer.Chem. Soc. 40; 1361-1402.
  • Lieser KH, Steinkopff T. 1989. Chemistry of radioactive iodine in the hydrosphere and in the geosphere. Radiochim. Acta. 46; 49–55.
  • Lyons GH, Stangoulis JCR, Graham RD. 2004. Expoliting micronutrient interaction to optimize biofortification programs; the case for inclusion of selenium and iodine in the Harvest Plus Program. Nutrition Reviews. 62; 247-252.
  • Marzadori C, Vittori Antisari L, Ciavatta C, Segui P. 1991. Soil Organic matter influnce on adsorption and desorption of boron. Soil Sci. Soc. Anı. J. 55; 1582-1585.
  • Mc Grath D, Fleming GA. 1988. Iodine Levels in Irish Soils and Grassses. J. Agri. Res.. 27(1); 75-81.
  • Mc Nally SR. 2011. Thestatus of iodine and selenium in Waikato soils. Master thesis, Master of Science in Chemistry, The University of Waikato.
  • Mehra OP, Jackson ML. 1960. Iron Oxide Removal From Soil and Clays by a Dithionite-Citrate System Buffered With Sodium Bicarbonate. Proc.7th Natl. Conf. on Clays and Clay Minerals, 317–327, New York.
  • Ngo DB, Dikassa LO, Kitolonda W, Kashala TD, Gervy C, Dumont J, Vanovervelt N, Comntempré B, Diplock AT, Peach S. Vanderpas J. 1997. Selennium status in pregnant women of a rural population (Zaire) in relationship to iodine deficiency. Tropical Medicine&International Health 2; 572-581.
  • Polemio M, Rhoades JD. 1977. Determining Cation Exchange Capacity: New Procedure for Calcareous and Gypsiferous Soils. Soil Sci. Soc. Am. J. 41; 524-528.
  • Potarzycki J, Gaj R, Schnug E. 2004. Phosphorus Adsorption in Soils After 20 Years of Organic and Mineral Fertilization. Landbauforschung Volkenrode, 54; 13–20.
  • Richards LA.1954. Diagnosis and improvment of saline and alkali soils. U.S.Dept.Agr.Handbook 60.
  • Shetaya WHAH. 2011. Iodine Dynamics In Soil. phD Thesis. The University of Nottingham. Sözüdoğru S, Usta S, Halilova H, Hosseini S, Ünver İ. 1997. Kastamonu Yöresinde Su, Toprak ve Bitki Örneklerinin İyodür Kapsamları. Türk Tarım ve Ormancılık Der. 21(3); 213-218.
  • Sposito G. 1984. The Surface Chemistry of Soils: Oxford University Press, Oxford.
  • Sposito G. 1990. Moleculer Models of ion Adsorption on mineral surfaces. In: Hochella, M.F., White A.F. (Eds), Mineral Water Interface Geochemistry. Rev Mineral., 261-279.
  • Thompson B. (edited). 2011. Combating micronutrient deficiences: Food-based approaches. FAO. p292-293,
  • U.S. Salinity Laboratory Staff, 1954. Diagnosis and improvement of saline and alkali soils. U.S.D.A. Handbook 60, USA.
  • Ullman WJ, Aller RC. 1985. The geochemistry of iodine nearshore carbonate sediments. Geochimica Et Cosmochimica Acta, 49; 967-978.
  • Um W, Serne RJ, Krupka KM. 2004. Linearity and reversibility of iodide adsorption on sediments from Hanford, Washington under water saturated conditions. Water Research, 38; 2009-2016.
  • Vinegradov AP. 1959. The Geochemistry of Rare and Dispersed Chemical Elements in Soils. Consultants Bureau Press Inc., New York. pp.65-70.
  • Whitehead DC. 1973a. Sorption of Iodide by Soils as Influenced by Equilibrium Conditions and Soil Properties. J. Sci. Food Agric. 24; 547-556.
  • Whitehead DC. 1973b. Studies on Iodine in British Soils. J. Soil Sci, 24; 260-270.
  • Whitehead DC. 1974a. The influence of organic matter, chalk and sesquioxides on the solubility of iodide, elemental iodine and iodate incubated with soil. Soil Sci. 25; 461 -470.
  • Whitehead DC. 1974b. Sorption of Iodide by Soil Components. J. Sci. Food Agric. 25; 73-79.
  • Whitehead DC. 1978. Iodine in soil profiles in relation and aluminium oxides and organic matter. J. Soil Sci. 29(1); 88– 94. Whitehead DC. 1984. The Distribution and Transformation of Iodine in the Environment. Enviro. Int. 10; 321-333.
  • Yoshida S, Muramatsu Y, Uchida S. 1992. Studies on the sorption of I− (iodide) and IO3− (iodate) onto andosols. Water Air Soil Pollut. 63; 321–329