Sağlık Alanında Kullanılan Polimerik Biyomateryaller

Aynı veya farklı atomik gruplara sahip kimyasal bağlarla, daha fazla veya düzenli uzun zincirli veya dallanmış yüksek molekül ağırlıklı bileşikler oluşur ve bunlar polimerler olarak adlandırılır. Sentez başlatılmadan kullanılan küçük molekül ağırlıklı birimler “monomer” adını alr. Polimerlerin özellikleri, monomer yapı taşlarına göre büyük farklılık gösterir. Bu nedenle, uygulama alanı için uygun biyomateryallerin seçimi dikkatli yapılmalıdır. Kullanılan polimerlerin, ne kadar verimli olduğu sorgulanmalıdır. Bu sorgulama sayesinde daha etkili polimerler elde edilir. Yeni bir polimer çalışması yürütürken, mevcut malzemenin daha dayanıklı, sağlıklı ve biyolojik olarak uyumlu hale getirilmesi araştırılmalıdır. Gelişen teknoloji ve yapılan bilimsel araştırma sayesinde hastaya uygulanan tedavi şekilleri ve yöntemleri önemli değişiklikler göstermektedir. Bu nedenle, polimerik biyomateryaller olarak kullanılan malzemelerin biyouyumlulukları araştırılmalıdır. Günümüzde geliştirilmiş polimerik biyomateryallerin tıp alanında birçok uygulaması bulunmaktadır. Hücrenin kapsüllenmesi, ilaç teslimatı, yüzey modifikasyonu, enzim immobilizasyonu, biyosensörler ve çip laboratuvarları gibi birçok alanda kullanılır. Bu çalışmada; polimerik biyomateryallerin kullanım amacı, kullanım alanı ve biyouyum hakkında bilgi verilmiştir. İnsan vücudunda kullanılan polimerik biyomateryaller, bunların zamanla ortaya çıkan uyumsuzlukları ve son gelişmeler üzerinde durulmuştur.

___

  • 1. Myung JH, Gajjar KA, Saric J, Eddington DT, Hong S. Dendrimer-mediated multivalent binding for the enhanced capture of tumor cells, Angew. ChemInt Ed.2011; 50:11769- 11772, DOI: 10.1002/anie.201105508.
  • 2. Deng C, Jiang YJ, Cheng R, Meng FH, Zhong ZY. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. NanoToday. 2012. p. 467-80.
  • 3. April MK, Andrea MK, Salinas CN, Kristi SA. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science. 2009. p. 59-63.
  • 4. Salata OV. Applications of nanoparticles in biology and medicine. Journal of Nano biotechnology. 2004. p. 3.
  • 5. Gibas I, Janik H. Synthetic polymer hydrogels for biomedical applications. Chemistry & Chemical Technology Review. 2010. p. 298.
  • 6. Jiang T, James R, Kumbar SG, Laurencin CT. Chitosan as a biomaterial: structure, properties, and applications in tissue engineering and drug delivery, natural and synthetic biomedical polymers. In: Sangamesh Kumbar, CatoLaurencin, MengDeng (ed.), Chapter 5, ElsevierInc. 2014. ISBN: 978- 0-12-396983-5, 91-107.
  • 7. Rivron NC, Liu J, Rouwkema J, de Boer J, van Blitterswijk CA. Engineering vascularised tissues in vitro. Eur Cell Mater. 2008. p. 27-40.
  • 8. Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev. 2012; 112:2739-2779, DOI: 10.1021/cr2001178.
  • 9. Lee B, Khang H, Lee GLJ. Ed Bronzino JD, Polymeric biomaterials. The Biomedical Engineering Handbook: Second Edition, 2000.
  • 10. Bonfield W, Taner E. Hydroxyapatite composite biomaterials –Evolution and applications. Materials World. 1997. p. 18- 20. 11. Keskin AO. Hidroksiapatit seramiklerin mekanik özelliklerinin zirkonya ilavesi ile geliştirilmesi. Yüksek Lisans Tezi, İTÜ, İstanbul. 2000.
  • 12. NPCS board of consultants & Engineers. Disposable Products Manufacturing Handbook, 2014, ISBN: 9789381039328.
  • 13. Özcan İ, Özer Ö. Geleceğin Polimerleri: Çevresel Faktörlere Duyarlı Akıllı Polimerler. Tfd-Kfçg Elektronik Bülteni, Ege Üniversitesi Eczacılık Fakültesi Farmasötik Teknoloji ABD, Ekim. 2009.
  • 14. Bajpai AK, Shukla SK, Bhanu S, Kankane S. Responsive polymers in controlled drug delivery. Progress in Polymer Science (Oxford). 2008. p. 1088-1118.
  • 15. Tran PA, Zhang L, Webster TJ. Carbon nanofibers and carbon nanotubes in regenerative medicine. Advanced Drug Delivery Reviews 2009. p. 1097-1114.
  • 16. Xu Q, Liu Y, Su S, Li W, Chen C, Wu Y. Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyper branched copolymer nanoparticles. Biomaterials. 2012. p. 1627-1639.
  • 17. Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A. Carbonnanotubes in biomedical applications: Factors, mechanisms, and remedies of toxicity: Mini perspective. Journal of medicinal chemistry. 2016. p.8149-8167.
  • 18. Gümüşderelioğlu M. Biyomateryaller. Bilim ve Teknik Dergisi TUBİTAK, 2002. p. 2- 4.
  • 19. Părpăriţă E, Cheaburu NC, Pațachia SF, VasileC. Polyvinylalcohol/chitosan/montmorillonitenanocompositespreparationbyfreeze/ thawcyclesandcharacterization. ActaChemicaIasi. 2014. p. 75-96.
  • 20. Saxena SK. Polyvinylalcohol (PVA). Chemicaland Technical Assessment, 2004. p. 3-5.
  • 21. Nilasaroya A, Poole-Warren AL, Whitelock JM, Martens PJ. Structural and functional characterization of poly (vinyl alcohol) and heparin hydrogels. Biomaterials. 2008. p. 4658-4664.
  • 22. Matsumura K, Hayami K, Hyon S, and Tsutsumi S. Control of proliferation and differentiation of osteoblasts on apatitecoatedpoly (vinylalcohol) hydrogel as an artificial articular cartilagematerial. Journal of Biomedical Materials Research Part A. 2009. p. 1226-1231.
  • 23. Chun HJ, Lee SB, Nam SY, Ryu SH, Jung SY, Shin SH, et al. Preparation and swelling behavior of thermally cross-linkedpoly (vinyl alcohol) and poly (acrylic acid) hydrogel. J. Ind Eng Chem. 2005. p. 556-560.
  • 24. Jie C, Guo-Xian Z, Guo-Hua Z. Preparation and characterization of Fe3O4 nanoparticles used in intelligent polymer gels and intelligent polymer gels drived by magnetic fields. 2008. p. 35-40.
  • 25. Teodorescu M, Bercea M. Poly (vinyl pyrrolid one) – A versatile polymer for biomedical and beyond medical applications. Polymer- Plastics Technology and Engineering. 2015. p. 923-943.
  • 26. Gümüşderelioğlu M. Yumuşak ve Akıllı Polimerler. Bilim ve Teknik Tübitak Yayınları. 2010. p. 507.