RAMAN SPECTROSCOPY AND ITS APPLICATIONS

RAMAN SPECTROSCOPY AND ITS APPLICATIONS

The discovery of Raman scattering was made by Krishna and Raman in 1928 and attracted thousands of people. Until about 1986, the Raman literature was dominated by physical and structural studies. There were few reports of Raman spectroscopy applied to chemical analysis. The application of Raman spectroscopy for "real world" chemical analysis has been blocked by both fundamental and technical issues, including poor intensity, fluorescence interference, and inefficient light collection and detection. Prospects for routine chemical analysis took a big turn towards a better start in 1986 with the introduction of the Fourier transform (FT)-Raman, charge-coupled devices, small computers, and near-infrared lasers. These developments overcame major hurdles and resulted in a Raman renaissance in the context of chemical analysis.

___

  • Kaynakça [1] Le Ru, E., & Etchegoin, P. (2008). Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. Elsevier.
  • [2] Smith, E., & Dent, G. (2019). Modern Raman spectroscopy: a practical approach. John Wiley & Sons.
  • [3] Smith, R., Wright, K. L., & Ashton, L. (2016). Raman spectroscopy: an evolving technique for live cell studies. Analyst, 141(12), 3590-3600.
  • [4] Puppels, GJ, De Mul, FFM, Otto, C., Greve, J., Robert-Nicoud, M., Arndt-Jovin, DJ, & Jovin, TM (1990). Konfokal Raman mikrospektroskopisi ile tek canlı hücrelerin ve kromozomların incelenmesi. Doğa, 347 (6290), 301-303.
  • [5] Zoladek, A., Pascut, F., Patel, P., & Notingher, I. (2010). Development of Raman Imaging System for time-course imaging of single living cells. Spectroscopy, 24(1-2), 131-136.
  • [6] Delhaye, M., & Dhamelincourt, P. (1975). Raman microprobe and microscope with laser excitation. Journal of Raman spectroscopy, 3(1), 33-43.
  • [7] Schlücker, S., Schaeberle, MD, Huffman, SW ve Levin, IW (2003). Raman mikrospektroskopisi: nokta, çizgi ve geniş alan görüntüleme metodolojilerinin karşılaştırılması. Analitik Kimya , 75 (16), 4312-4318.
  • [8] Ashton, L., Hollywood, KA ve Goodacre, R. (2015). Tek hücrelerin Raman görüntülerini renkli anlamlandırma. Analist , 140 (6), 1852-1858.
  • [9] Lattermann, A., Matthäus, C., Bergner, N., Beleites, C., Romeike, B. F., Krafft, C., ... & Popp, J. (2013). Characterization of atherosclerotic plaque depositions by Raman and FTIR imaging. Journal of biophotonics, 6(1), 110-121.
  • [10] Marzec, K. M., Wrobel, T. P., Rygula, A., Maslak, E., Jasztal, A., Fedorowicz, A., ... & Baranska, M. (2014). Visualization of the biochemical markers of atherosclerotic plaque with the use of Raman, IR and AFM. Journal of biophotonics, 7(9), 744-756.
  • [11] Kumar, R., Singh, G. P., Grønhaug, K. M., Afseth, N. K., de Lange Davies, C., Drogset, J. O., & Lilledahl, M. B. (2015). Single cell confocal Raman spectroscopy of human osteoarthritic chondrocytes: a preliminary study. International journal of molecular sciences, 16(5), 9341-9353.
  • [12] Omberg, K. M., Osborn, J. C., Zhang, S. L., Freyer, J. P., Mourant, J. R., & Schoonover, J. R. (2002). Raman spectroscopy and factor analysis of tumorigenic and non-tumorigenic cells. Applied Spectroscopy, 56(7), 813-819.
  • [13] Chan, JW, Taylor, DS, Zwerdling, T., Lane, SM, Ihara, K., & Huser, T. (2006). Mikro-Raman spektroskopisi, bireysel neoplastik ve normal hematopoietik hücreleri tespit eder. Biyofizik dergisi ,90 (2), 648-656.
  • [14] Chan, J. W., Taylor, D. S., & Thompson, D. L. (2009). The effect of cell fixation on the discrimination of normal and leukemia cells with laser tweezers Raman spectroscopy. Biopolymers: Original Research on Biomolecules, 91(2), 132-139.
  • [15] Erim, A. S. (2011). Tabakalı yarıiletkenlerin konfokal raman ve fotolüminesans spektrumları (Master's thesis, Trakya Üniversitesi Sosyal Bilimler Enstitüsü).