DETERMINATION OF STRUCTURAL PROPERTIES OF Fe2O3 COMPOUND

DETERMINATION OF STRUCTURAL PROPERTIES OF Fe2O3 COMPOUND

Abstract: Semiconductors that form the basis of electronics; examination of its electrical, optical, magnetic, etc. properties in a wide range is thought to accelerate technological development and progress. X-Ray Diffraction (XRD) spectrometry, which provides a lot of information about the structural properties of semiconductor materials, is especially important in this respect. With XRD analysis, properties such as material structure (crystalline/amorphous), qualitative analysis for crystalline materials, calculation of lattice parameter, determination of interplanetary distance, calculation of miller indices, determination of crystal lattice structure can be determined. In this study, Fe2O3 structure has been investigated, which attracts great attention due to its application potential such as field effect transistors, solar cells, UV photodetectors and gas sensors. The Fe2O3 structure with an average crystal size of 8.6 nm and a preferential crystal orientation (311) grown by RF magnetron sputtering method was investigated by XRD technique.

___

  • Kaynakça [1] Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W., Scott, J. H. J., & Joy, D. C. (2017). Scanning electron microscopy and X-ray microanalysis. Springer.
  • [2] Thamaphat, K., Limsuwan, P., & Ngotawornchai, B. (2008). Phase characterization of TiO2 powder by XRD and TEM. Agriculture and Natural Resources, 42(5), 357-361.
  • [3] Monshi, A., Foroughi, M. R., & Monshi, M. R. (2012). Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World journal of nano science and engineering, 2(3), 154-160.
  • [4] McMullan, D. (1995). Scanning electron microscopy 1928–1965. Scanning, 17(3), 175-185.
  • [5] Zhou, W., Apkarin, R., Wang, Z. L., & Joy, D. (2006). Fundamentals of scanning electron microscopy (SEM). In Scanning microscopy for nanotechnology (pp. 1-40). Springer, New York, NY.
  • [6] Wojcikiewicz, E. P., Zhang, X., & Moy, V. T. (2004). Force and compliance measurements on living cells using atomic force microscopy (AFM). Biological procedures online, 6(1), 1-9.
  • [7] Trache, A., & Meininger, G. A. (2008). Atomic force microscopy (AFM). Current Protocols in Microbiology, 8(1), 2C-2.
  • [8] Chen, D., & Xu, R. (1998). Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Materials Research Bulletin, 33(7), 1015-1021.
  • [9] Mitra, S., Das, S., Mandal, K., & Chaudhuri, S. (2007). Synthesis of a α-Fe2O3 nanocrystal in its different morphological attributes: growth mechanism, optical and magnetic properties. Nanotechnology, 18(27), 275608.
  • [10] Zhang, X., Sui, C., Gong, J., Su, Z., & Qu, L. (2007). Preparation and formation mechanism of different α-Fe2O3 morphologies from snowflake to paired microplates, dumbbell, and spindle microstructures. The Journal of Physical Chemistry C, 111(26), 9049-9054.
  • [11] Schimanke, G., & Martin, M. (2000). In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3). Solid State Ionics, 136, 1235-1240.
  • [12] Guivar, J. A. R., Sanches, E. A., Bruns, F., Sadrollahi, E., Morales, M. A., López, E. O., & Litterst, F. J. (2016). Vacancy ordered γ-Fe2O3 nanoparticles functionalized with nanohydroxyapatite: XRD, FTIR, TEM, XPS and Mössbauer studies. Applied Surface Science, 389, 721-734.
  • [13] Patterson, A. L. (1939). The Scherrer formula for X-ray particle size determination. Physical review, 56(10), 978