Toprak Kaynaklı Dirsek Tip Isı Borularıyla Buzlanmanın Önlenmesi

Karayolları, havaalanı ve kaldırımlarda buzlanmanın olumsuz etkileri çoğunlukla kış sezonunda yaygın olarak görülür. Buzlanmanın önlenmesi için klasik yöntemlere alternatif olarak, toprak kaynaklı ısı boruları araştırmacılar için ilgi çekicidir. Toprak kaynaklı ısı boruları, toprağı ısı kaynağı olarak kullanıp, taşıdığı ısı enerjisi ile yüzeydeki buzlanmayı önleyebilir. Amaca yönelik olarak dört farklı dirsek tipi ısı borusu üretilmiştir. Bu ısı borularının beton yüzeyde buzlanmayı önleyebileceği alanın belirlenmesi deneyleri kontrollü bir soğuk odada yapılmıştır. Soğuk oda ortam sıcaklığı ve toprak sıcaklıkları değiştirilerek, beton yüzeyindeki sıcaklık dağılımı değişimi gözlenmiş ve sonuçlar şekillerle değerlendirilmiştir. Isı borusunun çapı arttıkça, taşıyacağı ısı akısı da artar. Bu artış, beton yüzeyinin sıcaklık değişimi ile gözlemlenmiştir. Sonuç olarak dirsek tipi toprak kaynaklı ısı boruları için uygun iş akışkanı, boru çapı ve ısı borusu uzunluğu seçimi ile yüzeydeki buzlanmanın önlenebileceği görülmüştür.

Prevention of Icing by Using Ground Source Elbow Type Heat Pipe

Adverse effects of icing on highways, airports and sidewalks are common in winter season. As an alternative to conventional methods for the prevention of icing, ground-source heat pipes are studied by researchers. Ground-source heat pipes can use the soil as a heat source and prevent icing on the surface with the heat energy it carries. For this purpose, four different elbow type heat pipes were produced. The determination of the area where these heat pipes can prevent icing on the concrete surface was carried out in a controlled cold room. The temperature distribution on the concrete surface was observed by changing the cold room ambient temperature and soil temperatures and the results were evaluated with figures. As the diameter of the heat pipe increase, the heat flux that the heat pipe can carry also increase. This increase was observed by the temperature change at the concrete surface. As a result, it was observed that the icing on the surface can be prevented by choosing suitable working fluid, pipe diameter and heat pipe length for elbow type ground source heat pipes.

___

  • [1] Allison, E.K., Bernard, N.S., Effects of Highway Deicing Chemicals on Shallow Unconsolidated Aquifers in Ohio, Final Report, Scientific Investigations Report, 2004-5150, 2004. https://pubs.er.usgs.gov/publication/ sir20045150, (Erişim Tarihi. 14.10.2019).
  • [2] Shi, X., Fay, L., Gallaway, C., Volkening K., Peterson, M.M., Pan, T., Creighton, A., Lawlor, C., Mumma, S., Liu, Y., Nguyen, T.A., Evaluation of Alternative Anti-Icing and Deicing Compounds Using Sodium Chloride and Magnesium Chloride as Baseline Deicers, 2009. https://www.codot.gov/programs/research/pdfs/2009/antiicing.pdf/at_download/ file, (Erişim Tarihi: 12.03.2019).
  • [3] Yang, Z.H.J., Intersection-Pavement De-Icing: Comprehensive Review and the State of the Practice. Sciences in Cold and Arid Regions, 11, 1, 1-12, 2019.
  • [4] Anonim, Devlet Hava Meydanları İşletmesi Genel Müdürlüğü, Hava Alanları Kar Mücadele Yönergesi. Yönerge No:11, 11s., Anka
  • [5] Lai, J., Qiu, J., Chen, J., Fan, H., Wang, K., New Technology and Experimental Study on Snow-Melting Heated Pavement System in Tunnel Portal. Advances in Materials Science and Engineering, 2015, 11, 2015, Article ID: 706536, 1-11, http://dx.doi. org/10.1155/2015/706536
  • [6] Anonim, The Use of Selected Deicing Materials on Michigan Roads: Environmental and Economic Impacts, 1993. https://www.michigan.gov/documents/toc-deice_51451_7.pdf, (Erişim Tarihi: 16.11.2019).
  • [7] Zhao, H.M., Wang, S.G., Wu, Z.M., Che, G.J., Concrete Slab Installed with Carbon Fiber Heating Wire for Bridge Deck Deicing. Journal of Transportation Engineering, 136, 6, 500-509, 2010.
  • [8] Yang, Z., Yang, T., Song, A.G., Singla, M., Experimental Study on an Electrical Deicing Technology Utilizing Carbon Fiber Tape, Alaska University Transportation Center, Final Report, DTRT06-G-0011. 2012. https:// pdfs.semanticscholar.org/fb33/356e580a68cf594dd50878a0c0d0fe296ff6.pdf, (Erişim Tarihi: 16.11.2019).
  • [9] Ochsner, K. Carbon Dioxide Heat Pipe in Conjunction with a Ground Source Heat Pump (GSHP). Applied Thermal Engineering 28, 2077-2082, 2008.
  • [10] Tan, Y.Q., Fu, Y.K., Li, Y.L, Zhang, C., Responses of Snow-Melting Airfield Rigid Pavement under Aircraft Loads and Temperature Loads and their Coupling Effects, Transportation Geotechnics 14, 107-116, 2018.
  • [11] Mauro, A., Grossman, J.C., Street-heat: controlling road temperature via low enthalpy geothermal energy, Applied Thermal Engineering, 110, 1653-1658, 2017.
  • [12] Qing, Q., Zhang, D., Chen, D., Analysis of Gravity Heat Pipe for Anti-Icing and Snow Melting on Road Surface. Material Science Engineering, 592, 1-8, 2019.
  • [13] Zorn, R., Steger, H., Kolbel, T., De-Icing and Snow Melting System with Innovative Heat Pipe Technology. World Geothermal Congress, 19-25 April, Melbourne, Australia, 1-6, 2015. https://pangea.stanford.edu/ERE/db/ WGC/papers/WGC/2015/29041.pdf, (Erişim Tarihi: 25.10.2018).
  • [14] Ozsoy A., Yildirim R. 2016. Prevention of Icing with Ground Source Heat Pipe: A Theo retical Analysis for Turkey’s Climatic Conditions. Cold Regions Science and Technology, 125, 65-71.
  • [15] Wang, X., Zhu, Y., Zhu, M., Zhu, Y., Fan, H., Wang, Y., Thermal Analysis and Optimization of an Ice and Snow Melting System Using Geothermy by Super-Long Flexible Heat Pipes. Applied Thermal Engineering, 112, 353-363, 2017.
  • [16] Yildirim, R., Yidiz, A., Ozsoy, A., Influence of Fluid Charge Rate on Gravity Assisted Heat Pipe Performance at Low Temperatures, MAKÜ, Uygulamalı Bilimler Dergisi, 2, 2, 52-67, 2018.
  • [17] Yildirim, R., Ozsoy, A., The Performance of Ground Source Heat Pipes at Low Constant Source Temperatures. International Journal of Green Energy, 15, 11, 641-650, 2018. 26
  • [18] Seferoğlu, A.G., Seferoğlu, M.T., Akpınar, V., Karayolu ve Havayolu Kaplamalarında Kullanılan Kar ve Buzla Mücadele Yöntemlerinin Mali Analizi. Gazi Üniversitesi Fen Bilimleri Dergisi, Part C, Tasarım ve Teknoloji, 3, 1) 407-416, 2015.
  • [19] Lin, T.F., Lin, W.T., Tsay, Y.L., Wu, J.C., Experimental Investigation of Geyser Boiling in an Annular Two-Phase Closed Thermosyphon. International Journal of Heat Mass Transfer, 38, 2, 295-307, 1995.
  • [20] Faghri, A., Heat Pipe Science and Technology. Taylor and Francis, London, 874s., 1995.
  • [21] Noie, S.H., Heat Transfer Characteristics of a Two-Phase Closed Thermosyphon. Applied Thermal Engineering, 2005.