Farklı Standart Koşullar İçin İki Kademeli Bir Soğutma Sisteminin Deneysel İncelenmesi

Endüstriyel soğutma sistemlerinin enerji verimliliğini ve ekonomisini iyileştirmek için farklı tasarım seçenekleri günümüzde yoğun olarak çalışılmaktadır. Daha iyi çevrim performansı elde etmek için çevrim modifikasyonlarına yoğun bir ilgi lite-ratürden görülmektedir. Son yıllarda, geleneksel çevrimleri değiştirmek, en verimli soğutucu akışkanları aramak, daha iyi kompresörler geliştirmek ve çevrim sistemi yapılandırmalarını optimize etmek de dâhil olmak üzere buhar sıkıştırma çevrimi teknolojilerini geliştirmek için önemli çabalar sarf edilmiştir. Bu çalışmada, farklı standart koşullar altında değişken hızlı kompresörlü buhar sıkıştırmalı soğutma sisteminin deneysel analizi yapılmıştır. Sistem, SC5, SC4 ve SC3 olan standart ko-şullara göre farklı oda sıcaklıkları için test edilmiştir. Belirlenen standart koşul-larda buharlaştırıcı kapasitesi ve sistemin performans katsayısı (COP) değerlen-dirilmiştir. Hem hava tarafı hem de soğutucu tarafı hesaplamaları yapılmış ve bu standart koşullar için karşılaştırılmıştır.

Experimental Investigation of a Two Stage Cooling System for Different Standard Conditions

Different design options are being studied extensively today to improve the energy efficiency and economy of industrial cooling systems. An intense interest in cycle modifications is seen from the literature to achieve better cycle performance. In recent years, significant efforts have been made to develop vapor compression cycle technologies, including replacing tra-ditional cycles, searching for the most efficient refrigerants, developing better compressors, and optimizing cycle system configurations. In this study, experimental analysis of variable speed compressor vapor compression cooling system under different standard conditions has been done. The system has been tested for different room temperatures according to standard conditions, SC5, SC4 and SC3. Evaporator capacity and coefficient of performance (COP) of the system were evaluated under the specified standard conditions. Both air side and cooler side calculations were made and compared for these standard conditions.

___

  • [1] Stoecker, W.F., Industrial Refrigeration Handbook, McGraw-Hill, 1998.
  • [2] The Role of Refrigeration in the Global Economy 29th Informatory Note on Refrigeration Technologies, International Institute of Refrigeration, November 2015.
  • [3] Yilmaz, D., Yilmaz, I.C., Comparative Cost Assessment of Cold Storage Plants and Natural Storage Structures for Potato, Potato Res., 1-9, (2020).
  • [4] Lorentzen, G., Revival of Carbon Dioxide as a Refrigerant, Int J Refrig., 17:292-301, 1994.
  • [5] Cavallini, A., Neksa, P., Prospects for the Return of CO2 as a refrigerant, Buenos Aires (Argentina): CIAR, 761–790, 2001.
  • [6] Cavallini, A., Cecchinato, L., Corradi, M., Fornasieri, E., Zilio, C., Two-stage Transcritical Carbon Dioxide Cycle Optimisation: a Theoretical and Experimental Analysis, Int J Refrig., 28:1274–1283, 2005.
  • [7] Cho, H., Ryu, C., Kim, Y., Cooling Performance of a Variable Speed CO2 Cycle With an Electronic Expansion Valve and Internal Heat Exchanger, Int J Refrig., 30:664–671, 2007.
  • [8] Agrawal, N., Bhattacharyya, S., Studies on a Two Stage Transcritical Carbon Dioxide Heat Pump Cycle With Flash Intercooling, Appl Therm Eng., 27:299–305, 2007.
  • [9] Rigola, J., Ablanque, N., Pérez-Segarra, C.D., Oliva, A., Numerical Simulation and Experimental Validation of Internal Heat Exchanger Influence on CO2 Transcritical Cycle Performance, Int J Refrig.,33:664–74, 2010.
  • [10] Torrella, E., Sánchez, D., Llopis, R., Cabello, R., Energetic Evaluation of an Internal Heat Exchanger in a CO2 Transcritical Refrigeration Plant Using Experimental Data, Int J Refrig., 34:40–9, 2011.
  • [11] Agrawal, N., Bhattacharyya, S., Studies on a Two Stage Transcritical Carbon Dioxide Heat Pump Cycle With Flash Intercooling, Appl Therm Eng., 27:299–305, 2007.
  • [12] Sarkar, J., Agrawal, N., Performance Optimization of Transcritical CO2 Cycle With Parallel Compression Economization, Int J Therm Sci., 49:838–43, 2010.
  • [13] Llopis, R., Sánchez, D., Sanz-Kock, C., Cabello, R., Torrella, E., Energy and Environmental Comparison of Two-Stage Solutions for Commercial Refrigeration at Low Temperature: Fluids and Systems, Appl. Energy, 138:133142, doi:10.1016/j. apenergy.2014.10.069, 2015.
  • [14] Mota-Babiloni, A., Mateu-Royo, C., Navarro-Esbrí, J., Molés, F., Amat-Albuixech, M., Barragán-Cervera, Á,. Optimisation of High-Temperature Heat Pump Cascades With Internal Heat Exchangers Using Refrigerants With Low Global Warming Potential, Energy, 165:1248–1258, doi:10.1016/j.energy.2018.09.188, 2018.
  • [15] Lee T., Liu C., Chen T. , Thermodynamic Analysis of Optimal Condensing Temperature of Cascade Condenser in CO2/NH3 Cascade Refrigeration Systems, Int J Refrig., 29: 11001108, 2006.
  • [16] Bansal, P.K., Jain, S., Cascade Systems: Past, Present, and Future, ASHRAE Trans., 113 (1): 245–252, 2007.
  • [17] J. Alberto Dopazo, J. F. Seara, F. J. Uhia, Theoretical Analysis of a CO2–NH3 Cascade Refrigeration System for Cooling Applications at Low Temperatures, Appl. Therm Eng., 29:1577-1583, 2007.
  • [18] V. Casson, Theoretical and experimental analysis of CO2 as a refrigerant in retail refrigeration (in Italian). PhD. Thesis, Università di Padova, Italy, (2002).
  • [19] P. Bansal, A Review - Status of CO2 as a Low Temperature Refrigerant: Fundamentals and R&D Opportunities, Appl. Therm Eng, 41:1829, 2012.
  • [20] Sun, Z., Li, J., Liang, Y., Sun, H., Liu, S., Yang, L.,Wang C., Dai, B., Performance Assessment of CO2 Supermarket Refrigeration System in Different Climate Zones of China, Energy Convers Manage., 208:112572, 2020.