Metabolik Aktivitenin Işınım Etkisi Altında Isıl Konfor Üzerine Etkisinin İncelenmesi

Bu çalışmada, aydınlatma lambalarından gelen ışınım etkisi altında metabolik aktivite düzeyinin ısıl konfor üzerine etkisi incelenmiştir. Isıl konfor üzerinde metabolik aktivite düzeyinin etkisini belirleyebilmek için iki bölmeli anlık enerji dengesi modeli (Gagge modeli) kullanılmış olup, model üzerinde bazı değişiklikler yapılmıştır. Isıl konfor veya konforsuzluk durumu deri sıcaklığı ve ıslaklığı üzerinden değerlendirilmiştir. Sonuç olarak, deri sıcaklığının ve ıslaklığının metabolik aktivitenin artmasıyla arttığı görülmüştür.

Investigation of the Effect of Metabolic Activity on Thermal Comfort Under Radiation Effect

In this study, the effect of metabolic activity level on thermal comfort under the effect of radiation from the lighting lamps was investigated. In order to determine the effect of metabolic activity on thermal comfort, Gagge’s two node model was used and some changes were made on the model. Thermal comfort or discomfort was evaluated with skin temperature and wetness. Consequently, It was observed that the skin temperature and wetness increased with the increase in the level of metabolic activity.

___

  • [1] Yang, C., Yin, T., Fu, M., “Study on the Allowable Fluctuation Ranges of Human Metabolic Rate and Thermal Environment Parameters Under The Condition of Thermal Comfort”, Building and Environment, 103: 155-164, 2016
  • [2] Ji, W., Luo, M., Cao, B., Zhu, Y., Geng, Y., Lin, B., “A New Method To Study Human Metabolic Rate Changes and Thermal Comfort In Physical Exercise by CO2 Measurement in an Airtight Chamber”, Energy And Buildings, 177: 402-412, 2018.
  • [3] Angelova, R. A., Pichurov, G., Simova, I., Stankov, P., Rodrigo, I., “CFD Based Study of Thermal Sensation of Occupants Using Thermophysiological Model. Part II: Effect of Metabolic Rate and Clothing Insulation on Human-Environmental Interaction”, International Journal of Clothing Science and Technology, 27: 60-74. 2015.
  • [4] Uğursal, A., Culp, C. H., “The Effect of Temperature, Metabolic Rate and Dynamic Localized Airflow on Thermal Comfort”, Applied Energy, 111:64-73. 2013.
  • [5] Luo, M., Zhou, X., Zhu, Y., Sundell, J., “Revisiting an Overlooked Parameter in Thermal Comfort Studies, The Metabolic Rate”, Energy and Buildings, 118, Pp.152-159, 2016.
  • [6] Luo, M., Wang, Z., Ke, K., Cao, B., Zhai, Y., Zhou X., “Human Metabolic Rate and Thermal Comfort in Buildings. The Problem And Challenge”, Building and Environment. 131:44-52, 2018.
  • [7] Hong, S., Jong L., Jin M., Kwang L., “Thermal Comfort, Energy and Cost Impacts of PMV Control Considering Individual Metabolic Rate Variations in Residential Building”, Energies 11:7, 2018.
  • [8] Zhai, Y., Li, M., Gao, S., Yang, L., Zhang, H., Arens, E., Gao, Y., “Indirect Calorimetry on the Metabolic Rate of Sitting, Standing and Walking Office Activities”, Building and Environment, 145, 77-84, 2018.
  • [9] Gagge, A. P., Stolwijk, J. A. J., Nishi, Y., “An Effective Temperature Scale Based on a Simple Model of Human Physiological Regulatory Response", Ashrae Transactions 77: 247 – 257, 1971.
  • [10] Gagge, A. P., Fobelets, A. P., Berglund, L. G., “A Standard Predictive Index of Human Response to the Thermal Environment”, Ashrae Transactions 92: 709 – 31.1986.
  • [11] Ashrae, Ashrae Handbook-Fundamental, Chapter 9: Thermal Comfort, Ashrae, Atlanta, 2009.
  • [12] Arslanoglu, N., Yigit, A., “Experimental and Theoretical Investigation of the Effect of Radiation Heat Flux on Human Thermal Comfort”, Energy Build. 113: 23–29, 2016.
  • [13] Mccullough, E. A., Jones, B. W., Tamura, T., “A Database for Determining the Evaporative Resistance of Clothing”, Ashrae Transactions, 95: 316 – 328.1989.