$Al_2O_3$/Erimiş Tuz Nanoakışkan Karışımının Parabolik Güneş Kolektörlerinde Isı Transferine Etkisinin İncelenmesi

Bu çalışmada, hacimsel konsantrasyonu %1 ile %5 arasında değişen $Al_2O_3$ nano parçacıkları ile limit çalışma sıcaklıkları 220 °C ile 600 °C arasında değişen, ağırlıkça %60 sodyum nitrat ($NaNO_3$) ve ağırlıkça %40 potasyum nitrat ($KNO_3$) karışımı olan erimiş tuz karıştırılarak elde edilen nanoakışkanın parabolik güneş kolektöründe kullanımı ele alınmış ve erimiş tuza göre ısı transfer performansının artışı sayısal olarak incelenmiştir. Hesaplamalar, tam gelişmiş türbülanslı akışta gerçekleştirilmiş olup, alıcı boru uzunluğu 7,8 m ve açıklık alanı 39 m2 olan bir parabolik güneş kolektörüne uygulanmıştır. Ayrıca, alıcı boru ile cam boru arası vakumlu olarak kabul edilmiştir ve alıcı boru üzerine kaplanan seçici kaplama metal ile seramik karışımı olan cermet olarak seçilmiştir. Sonuç olarak %5 hacimsel konsantrasyondaki nanoakışkanın erimiş tuza göre ısı taşınım katsayısında maksimum %9,38 ve kolektörün ısıl veriminde ise maksimum %0,6 artış sağlandığı görülmüştür. Ayrıca, nanoakışkan içerisinde nanoparçacığın hacimsel konsantrasyonun artışı ile absorber boru içerisinde oluşan basınç düşümünün artışı doğru orantılı olduğu ve maksimum basınç düşümünün %7,7 olduğu hesaplamalar sonucunda gösterilmiştir.

Investigation of Heat Transfer Effect in Parabolic Trough Collectors With Using $Al_2O_3$/ Molten Salt Nanofluid

In this study, the nanofluid was obtained by mixing with $Al_2O_3$ nanoparticles which a volumetric concentration ranging from 1% to 5% and molten salt which working temperatures ranging from 220 °C to 600 °C and wt 60% sodium nitrate ($NaNO_3$ ) and wt 40% potassium nitrate ($KNO_3$ ). The use of nanofluids in the parabolic solar collector and the increase of heat transfer performance according to the molten salt were investigated numerically. The calculations were carried out in a fully devel oped turbulent flow and the receiver tube length is 7,8 m and the aparture area is 39 m2 . In addition, the receiving tube is evacuated between the glass tube and the selective coating coated on the receiving tube is selected as cermet, which is a ce ramic mixture with metal. As a result, the heat convective coefficient of the nanofluid was increased 9,38% at 5% volumetric concentration was increased 9,38% and the heat efficiency of the collector was increased by 0,6% compared to the molten salt. In addition, the pressure drop in the absorber tube increases as the volume of the nanoparticle in the nanoparticle increases and the maximum pressure drop is calculated as 7,67%.

___

  • [1] Wang, Y., Liu, Q., Lei, J., Jin, H., “A Three-Dimensional Simulation of a Parabolic Trough Solar Collector System Using Molten Salt As Heat Transfer Fluid”, Applied Thermal Engineering, 2014, 70: 462-476.
  • [2] Kalogirou, S. A., “Solar Energy Engineering: Processes and Systems”, 2014, Academic Press.
  • [3] Jaramillo, O. A., Borunda, M., Velazquez, K.M., Robles, B., “Parabolic Trough Solar Collector for Low Enthalpy Processes: An Analysis of the Efficiency Enhancement by Using Twisted Tape Inserts”, Renewable Energy, 2016, 93: 125-141.
  • [4] Bellos, E., Tzivanidis, E., Antonopoulos, K. A., “A Detailed Working Fluid Investigation for Solar Parabolic Trough Collectors”, Applied Thermal Engineering, 2016.
  • [5] Sokhansefat, T., Kasaeİan, A. B., Kowsary, F., “Heat Transfer Enhancement in Parabolic Trough Collector Tube Using $Al_2O_3$ /Synthetic Oil Nanofluid", Renewable and Sustainable Energy Reviews, 2014, 33: 636-644.
  • [6] Yilmaz, İ. H., Mwesigye, A., “Modeling, Simulation and Performance Analysis of Parabolic Trough Solar Collectors: A Comprehensive Review”, Applied Energy, 2018, 225: 135-174.
  • [7] Rehan, M. A., Ali, M., Shikh, N. A., Khalil, M. S., Chaudhary, G. Q., Rashid, T. U., Shehryar, M., “Experimental Performance Analysis of Low Concentration Ratio Solar Parabolic Trough Collectors With Nanofluids in Winter Conditions”, Renewable Energy, 2018, 118: 742-751
  • [8] Subramani, J., Nagarajan, P. K., Mahian, O., Sathyamurthy, R., “Efficiency and Heat Transfer Improvements in a Parabolic Trough Solar Collector Using TiO2 Nanofluids Under Turbulent Flow Regime”, Renewable Energy, 2018, 119: 19-31.
  • [9] Coccia, G., Di Nicola, G., Colla, L., Fedele, L., Scattolini, M., “Adoption of Nanofluids in Low-Enthalpy Parabolic Trough Solar Collectors: Numerical Simulation of the Yearly Yield”, Energy Conversion and Management, 118, 306-319.
  • [10] Kasaeian, A., Daviran, S., Azarian, R. D., Rashidi, A., “Performance Evaluation and Nanofluid Using Capability Study of a Solar Parabolic Trough Collector”, Energy conversion and management, 89, 368-375.
  • [11] Bellos, E., Tzivanidis, C., Tsimpoukis, D., “Thermal, Hydraulic and Exergetic Evaluation of a Parabolic Trough Collector Operating with Thermal Oil and Molten Salt Based Nanofluids”, Energy Conversion and Management, 2018, 156: 388-402
  • [12] Wang, Y., Xu, j., Liu, Q., Chen, Y., Liu, H., “Performance Analysis of a Parabolic Trough Solar Collector Using $Al_2O_3$ /Synthetic Oil Nanofluid, Applied Thermal Engineering, 2016, 107: 469-478.
  • [13] Mwesigye, A., Meyer, J. P., “Optimal Thermal and Thermodynamic Performance of a Solar Parabolic Trough Receiver with Different Nanofluids and at Different Concentration Ratios”, Applied Energy, 2017, 193: 393-413.
  • [14] Bellos, E., Zafar, S., Tzivanidis, C., “The Use of Nanofluids in Solar Concentrating Technologies: A Comprehensive Review”, Journal of Cleaner Production, 2018, 196: 84-99.
  • [15] Arslan, F. M., Günerhan, H., “Enerji Uygulamalarında Kullanılan Nanoakışkanların Isıl Özelikleri”, 13. Ulusal Tesisat Mühendisliği Kongresi, 2017.
  • [16] Das, S. K., Choi, S. S., Yu, W., Pradeep, T., “Nanofluids: Science and Technology”, John Wiley & Sons, 2007.
  • [17] Bonk, A., Sau, S., Uranga, N., Hernaiz, M., Bauer, T., “Advanced Heat Transfer Fluids for Direct Molten Salt Line-Focusing CSP Plants”, Progress in Energy and Combustion Science, 2018, 67: 69-87.
  • [18] Bauer, T., Pfleger N., Breidenbach, N., Eck, M., Laing, D., S.Kaesche, S., “Material Aspects of Solar Salt for Sensible Heat Storage”, Applied Energy, 2013, 111: 1114-1119.
  • [19] Auerkari, P., “Mechanical and Physical Properties of Engineering Alumina Ceramics”, Espoo: Technical Research Centre of Finland, 1996.
  • [20] Sokhansefat, T., Kasaeian, A. B., “Numerical Study of Heat Transfer Enhancement by Using $Al_2O_3$ /Synthetic Oil Nanofluid in a Parabolic Trough Collector Tube”, World Academy of Science, Engineering and Technology, 2012, 69: 1154-1159.
  • [21] Zadeh, P. M., P., Sokhansefat, T., A.B., Kasaeian, A. B., Kowsary, F., Akbarzadeh A., “Hybrid Optimization Algorithm for Thermal Analysis in a Solar Parabolic Trough Collector Based on Nanofluid”, Energy, 2015, 82: 857- 864.
  • [22] Yu, W. Choi, S. U. S. “The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model”, Journal of Nanoparticle Research, 2003, 5.1-2: 167-171.
  • [23] Ferraro, V., Settino J., Cucumo M. A., Kaliakatsos, D., “Parabolic Trough System Operating With Nanofluids: Comparison with the Conventional Working Fluids and Influence on the System Performance”, Energy Procedia, 2016, 101: 782-789.
  • [24] Kasaiean, A., , Sameti M., Daneshazarian, R., Noori, Z., Adamian A., Ming, T., “Heat Transfer Network for a Parabolic Trough Collector as a Heat Collecting Element Using Nanofluid”, Renewable Energy, 2018, 123: 439-449.
  • [25] Hachicha, A. A., Rodríguez, I., Capdevila, R., Oliva, A., “Heat Transfer Analysis and Numerical Simulation of a Parabolic Trough Solar Collector”, Applied Energy, 2013, 111: 581-592.
  • [26]B. Bellos, E., Tzivanidis, C., “A Detailed Exergetic Analysis of Parabolic Trough Collectors”, Energy Conversion and Management, 2017, 149: 275-292.
  • [27]Behar, O., Khellaf, A., Mohammedİ, K., “A Novel Parabolic Trough Solar Collector Model–Validation with Experimental Data and Comparison to Engineering Equation Solver (EES)”, Energy Conversion and Management, 2015, 106: 268-281.
  • [28] Lovegrove, K., Stein, W., “Concentrating Solar Power Technology: Principles, Developments and Applications”. Elsevier, 2012.
  • [29] Coccia, G., DI Nicola, G., Hidalgo, A., “Parabolic Trough Collector Prototypes for Low-Temperature Process Heat”, Springer, 2016.
  • [30] Kalogirou, S. A., “A Detailed Thermal Model of a Parabolic Trough Collector Receiver”, Energy, 2012, 48.1: 298-306.
  • [31] Forristall, R., “Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver”, National Renewable Energy Lab., Golden, CO.(US), 2003.
  • [32] Duffie, J. A. Beckman, W. A., “Solar Engineering of Thermal Processes. John Wiley & Sons”, 2013.
  • [33] Çengel, Y.A., “Heat Transfer a Practical Approach”, 2002, Second edition.
  • [34] Dudley, V. E., Kolb, G. J., Mancini, T. R., Matthews C. W. Test Results: SEGS LS-2 Solar Collector. Nasa Sti/Recon Technical Report N, 1994, 96.
  • [35] Arslan, M., “Parabolik Güneş Kolektörlerinde Enerji ve Ekserji Analizi”, Ege Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2019.
  • [36] Syltherm 800 Heat Transfer Fluid https: // www.loikitsdistribution.com/ files/ syltherm800-product-brochure.pdf