Kapalı Çevrim Bir Soğutma Kulesinin Teorik ve Deneysel Olarak İncelenmesi

Bu çalışmada, kapalı çevrim bir su soğutma kulesi, sayısal ve deneysel olarak incelenmişolup, sayısal çalışmalarda Engineering Equation Solver (EES) yazılımıkullanılarak soğutma kulesi termodinamik modellemesi yapılmıştır. Deneysel çalışmalar,modüler olarak imal edilmiş bir soğutma kulesi üzerinde gerçekleştirilmiştir.Deneysel çalışmalarda, ısı değiştiricinin bağlantı şekli, sprey suyu debisi ve yaştermometre sıcaklığının etkisi ele alınarak farklı çalışma şartlarında testler gerçekleştirilmiştir.Prototip test kulesinde, ısı değiştirici iki parça halinde üretilmiş olupısı değiştiricilerin çapraz bağlanması durumunda çok yollu bir sistemin ısı transferikatsayısına ve soğutma kapasitesine etkisi incelenmiştir. Ayrıca sprey suyu debisindekideğişime bağlı olarak COP değeri ve ısı transferi katsayısı incelenmiştir. Cihaztestleri, atmosfere açık ortamda, farklı yaş termometre sıcaklıklarında gerçekleştirilmiştir.Deneysel çalışmalar sonucunda sprey suyu debisindeki artışın ve çokyollu ısı değiştirici uygulamasının, ısı transfer katsayısı değerinde artış sağladığısonucuna ulaşılmıştır. Yaş termometre sıcaklığının yüksek değerlerinde çalışılankoşullarda ise kule kapasitesinin olumsuz yönde etkilendiği gözlemlenmiştir.

Theoretical and Experimental Analysis of a Closed Circuit Cooling Tower

In this study, a closed circuit water cooling tower was examined numerically and experimentally. In numerical studies, thermodynamic modelling was performed by using Engineering Equation Solver (EES) software. Experimental studies were performed on a modularly manufactured cooling tower. In experimental studies, the effect of heat exchanger connection method, spray water flow rate and wet bulb temperature were examined and tests were carried out under different operating conditions. In the prototype test tower, the heat exchanger was produced in two parts and the effect of a multipath system on heat transfer coefficient and cooling capacity in case of cross linking of heat exchangers was investigated. In addition, the COP value and heat transfer coefficient were investigated according to the change in the spray water flow. Device tests were carried out at different wet bulb temperatures in the open atmosphere. As a result of experimental studies, it has been concluded that the increase in spray water flow and multipath heat exchanger application increase the heat transfer coefficient value. It has been observed that the tower capacity is adversely affected at the high wet bulb temperature.

___

  • [1] Kroger, D. G., Air-Cooled Heat Exchangers and Cooling Towers Volume I, PennWell Corp., Oklahoma, USA, 2004.
  • [2] Parker, R. O., Treybal, R. E., The Heat, Mass Transfer Characteristics of Evaporative Coolers, Chemical Engineering Progress Symposium Series, 57-32:138-149, 1961.
  • [3] Mizushina, T., Ito, R., Miyashita, H. “Characteristics and Methods of Thermal Design of Evaporative Coolers”, International Chemical Engineering, 8, 3, pp.532-538, 1968.
  • [4] Nitsu, Y., Naito, K., Anzai T., “Studies on Characteristics and Design Procedure of Evaporative Coolers”, Journal of the Society of Heating Air-Conditioning Sanitary Engineers of Japan, vol. 41, no. 12, 1967.
  • [5] Dreyer. A. A., Erens. P. J., “Analysis of Evaporative Coolers and Condensers”, Thesis, Department of Mechanical Engineering University of Stellenbosch, 1988.
  • [6] Leidenfrost, W., Korenic, B., “Analysis of Evaporative Cooling and Enhancement of Condenser Efficiency and of Coefficient of Performance”, Wärme und Stoffübertragung, 12:5-23, 1979.
  • [7] Hasan, A., Siren, K., “Theoretical and Computational Analysis of Closed Wet Cooling Towers and Its Applications in Cooling of Buildings”, Energy and Buildings, 34, 477-486, Finland, 2002.
  • [8] Facao, J., Oliviera, A. C., “Thermal Behaviour of Closed Wet Cooling Towers for Use With Chilled Ceilings”, Applied Thermal Engineering, 20, pp.1225-1236, Portugal, 2000.
  • [9] Shim, G .J., Sarker, M. M. A., Moon, C. G., Lee, H. S., Yoon, J., “Performance Characteristics of a Closed-Circuit Cooling Tower with Multiple Paths Heat Transfer Engineering”, Heat Transfer Engineering, 31.12, 992-997, South Korea, 2010.
  • [10] Budilhardjo, B., Nasruddin, N,. Nugraha, M. H., “Experimental and Simulation Study on the Performance of Counter Flow Closed Cooling Tower Systems”, International Journal Of Technology, vol. 6, no. 3, 2015.
  • [11] Zhou, Y,. Zhu, X., Ding, X., “Theoretical Investigation on Thermal Performance of New Structure Closed Wet Cooling Tower”, Heat Transfer Engineering, 39(5), 460-472, 2017.
  • [12] Xie, X., He, C,. Zhang, B,. Chen, Q,. “Heat Transfer Enhancement Fort He Coil Zone of Closed Wet Cooling Tower Through Field Synergy Analysis”, Computer Aided Chemical Engineering, 1927-1932, 2018.
  • [13] Mahdi, Q. S., Jaffal, H. M., “Experimental Investigation for The Thermal Performance of Modified Closed Wet Cooling Tower”, College of Engineering Journal, Vol.19 No.2, pp.310- 326, Iraq, 2016.
  • [14] Incropera, F. P., Dewitt. D. P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, no. 7, New York, USA, 1990.
  • [15] ASHRAE Handbook, 2017.
  • [16] Kline, S., J., McClintock, F., A., “Describing Uncertainties In Single-Sample Experiments” Mechanical Engineering, Jan. 1953.