Edirne İklim Şartlarında Şebekeye Bağlı Bir Fotovoltaik Sistemde Yıllık Tasarruf

Bu çalışmada, Edirne iklim şartlarında bulunan bir binanın elektrik yük ihtiyacınıkarşılamak üzere şebekeye bağlı bir fotovoltaik (PV) sistemin tasarımı ve analiziTRanNsient SYstem Simulation Program (TRNSYS) bileşenleri kullanılarak yapılmıştır. PV dizilerinin eğim açıları değiştirilerek yapılan analiz sonucunda yıllık toplam PV tasarrufu hesaplanmıştır. Yıllık toplam PV tasarrufunu maksimum yapanPV dizilerinin eğim açısı belirlenmiştir. PV sisteminden sağlanan yılık tasarrufunen yüksek değeri Csav= 73869.78 TL olarak 50º PV eğim açısında hesaplanmıştır.Belirlenen eğim açısında sistemin enerji analizi yapılmıştır. Elektrik şebekesindenalınan enerjinin en yüksek değeri aralık ayında 22205.70 kWh olup aylık enerji tasarrufu 3195.40 TL değerindedir. Sistemden elektrik şebekesine aktarılan enerjininen yüksek değeri ağustos ayında 5427.25 kWh olup aylık tasarruf 7809.60 TL değerinde belirlenmiştir.

Annual Savings in a Grid-Connected Photovoltaic System in Edirne Climate Conditions

In this study, the design and analysis of a photovoltaic (PV) system connected to the grid in order to meet the electrical load demand of a building in Edirne climatic conditions was made by using TRanNsient SYstem Simulation Program (TRNSYS) components. As a result of the analysis made by changing the slope angles of the PV arrays, the total PV savings per year were calculated. The tilt angle of the PV arrays, which maximizes the annual total PV savings, was determined. The highest value of the annual savings obtained from the PV system was calculated as Csav = 73869.78 TL at 50º PV tilt angle. The energy analysis of the system was made at the determined angle of tilt. The highest value of the energy taken from the electricity grid is 22205.70 kWh in December, and the monthly energy saving is 3195.40 TL. The highest value of the energy transferred from the system to the electricity grid is 5427.25 kWh in August, with a monthly saving was determined as 7809.60 TL.

___

  • [1] Sreenath, S., Sudhakar, K., Yusop A.F., Solomin, E., Kirpichnikova, I.M., “Solar PV Energy System in Malaysian Airport: Glare Analysis, General Design and Performance Assessment”, Energy Reports, 6, 698-712,2020.
  • [2] Chel, A., Tiwari, G.N., Chandra, A., “Simplified Method of Sizing and Life Cycle Cost Assessment of Building Integrated Photovoltaic System”, Energy and Buildings, 41, 1172-1180, 2009.
  • [3] Bernal-Agustı´n, JL., Dufo-Lo´pez, R., “Economical and Environmental Analysis of Grid Connected Photovoltaic Systems in Spain”, Renewable Energy 31, 1107–1128, 2006.
  • [4] Mondol, J.D., Yohanis, Y.G., Norton, B., “Optimising the Economic Viability of Grid-Connected Photovoltaic Systems”, Applied Energy, 86, 985–999, 2009.
  • [5] Mondol, J.D., Yohanis, Y.G., Smyth, M., Norton, B., “Long-Term Validated Simulation of a Building Integrated Photovoltaic System”, Solar Energy, 78, 163–176, 2005.
  • [6] Fidan, A, Kılıç, A.M., “Design and Performance Evaluation Based on Economics and Environmental Impact of a PV-Wind-Diesel and Battery Standalone Power System for Various Climates in Turkey”, Renewable Energy, 157, 424-443, 2020.
  • [7] Sepúlveda-Mora, S.B., Hegedus, S., “Making the Case for Time-Of-Use Electric Rates to Boost the Value of Battery Storage in Commercial Buildings With Grid Connected PV Systems”, Energy, 218, 119447, 2021.
  • [8] Salvadora, M., Grieu, S., “Methodology for the Design of Energy Production and Storage Systems in Buildings: Minimization of the Energy Impact on the Electricity Grid”, Energy and Buildings, 47, 659–673, 2012.
  • [9] Mondol, J.D., Yohanis, Y.G., Smyth, M., Norton, B., “Long Term Performance Analysis of a Grid Connected Photovoltaic System in Northern Ireland”, Energy Conversion and Management, 47, 2925–2947, 2006.
  • [10] So, J.H., Jung YS, Yu, G.J., Choi, J.Y., Choi, J.H., “Performance Results and Analysis of 3 kW Grid-Connected PV Systems”, Renewable Energy 32, 1858–1872, 2007.
  • [11] Li, D.H.W., Chow, S.K.H., Lee, E.W.M., “An Analysis of a Medium Size Grid-Connected Building Integrated Photovoltaic (BIPV) System Using Measured Data”, Energy and Buildings 60, 383–387, 2013.
  • [12] Kim, J.Y., Jeon, G.Y., Hong, W. H., “The Performance and Economical Analysis of Grid-Connected Photovoltaic Systems in Daegu, Korea”, Applied Energy 86, 265–272, 2009.
  • [13] Demoulias, C, “A New Simple Analytical Method for Calculating the Optimum Inverter Size in Grid-Connected PV Plants”, Electric Power Systems Research 80, 1197–1204, 2010.
  • [14] https://enerji.gov.tr
  • [15] https://www.gunder.org.tr
  • [16] TRNSYS 17, Transient System Simulation Program, Kullanım Kılavuzu TRNSYS Version 17.01.0025, Solar Energy Laboratory, website: http://sel.me.wisc.edu/trnsys, University of Wisconsin-Madison, 2012.
  • [17] Duffie, J.A. ve Beckman, W.A., “Solar Engineering of Thermal Processes”, second ed. John Wiley& Sons, New York, 1991.
  • [18] https://www.powerenerji.com.