ç Bölmelere Sahip Havalı Bir Güneş Kolektörünün Deneysel Olarak İncelenmesi

Havalı güneş kolektörleri, güneş enerjisinden termal enerji elde etmek için kullanılanaraçlardan biridir. Havalı güneş kolektörlerinde termal performansın iyileştirilebilmesiamacıyla düz yüzeyli emici plaka yerine farklı tasarımlara (kanatçık engel vb.) sahipemici plakalar kullanılabilmektedir. Kolektör emici plakasında yapılacak değişikliklerile kolektör içerisinde dolaşan havaya olan ısı transferi artırılarak termal verimliliğinyükseltilmesi hedeflenmektedir. Termal verimliliğin artırılması için tasarlanan ve kullanılan yöntemlerden bir tanesi de iç bölmelere sahip emici plakadır. Emici plaka üzerineyerleştirilen iç bölmeler sayesinde plaka ile hava arasındaki ısı geçişinin iyileştirilmesitemel amaçtır. Bu çalışmada, yazarlar tarafından tasarlanıp imal edilen iç bölmeleresahip bir havalı güneş kolektörünün performansı deneysel olarak incelenmiş ve Termodinamiğin I. ve II. Yasası kullanılarak analizler (enerji ve ekserji analizleri) gerçekleştirilmiştir. Osmaniye ili iklim koşullarında kesintisiz üç gün süre ile yapılan deneylerde,sıcaklık, nem ve ışınım gibi farklı parametreler ölçülerek kolektörün performansı değerlendirilmiştir. Elde edilen sonuçlardan, güneş kolektörünün performansının deneyyapılan günlerdeki dış iklim şartlarına bağlı olarak gün içerisinde değişim gösterdiğigörülmüştür. Deney süresince kolektör enerji verimi maksimum %87,08 olarak hesaplanmıştır. Kolektörün ekserji yıkımı ve iyileştirme potansiyeli değerleri deney süresincesırasıyla 0,211- 1,172 kW ve 0,210-1,134 kW arasında değişmiştir.

Experimental Investigation of a Solar Air Collector with Internal Baffles

Solar air collectors are one of the tools used to obtain heat energy from solar energy. In order to improve thermal performance in solar air collectors, instead of a flat surface absorber plate, a collector absorber plate with different designs (winglet obstacle, etc.) can be used. With the changes made on the surface of the collector absorbent plate, it is aimed to increase the thermal efficiency by increasing the heat transfer to the air, which circulate in the collector. One of the methods designed and used to increase thermal efficiency is the absorber plate with internal baffles. The primary purpose is to improve the heat transfer between the absorber plate and the air thanks to the internal baffles placed on the absorber plate. In this study, the performance of a solar air collector designed and manufactured by the authors was experimentally investigated, and analyses were carried out using the I. and II. Laws of Thermodynamics (energy and exergy analysis). The collector’s performance was evaluated by measuring the temperature, humidity and radiation in the experiments conducted for three days continuously in the climatic conditions of the province of Osmaniye. It was seen from the results that the performance of the solar collector changed during the day depending on the outdoor climate conditions on the days of the experiment. Collector energy efficiency during the experiment was calculated as a maximum value of 87,08%. The collector’s exergy destruction and improvement potential varied between 0,211- 1,172 kW and 0,210-1,134 kW, respectively, during the experiment.

___

  • [1] Imtiaz Hussain, M., Ménézo,C. Kim, J.-T., “Advances in Solar Thermal Harvesting Technology Based on Surface Solar Absorption Collectors: A Review”, Sol. Energy Mater. Sol. Cells, vol. 187, pp. 123–139, 2018, doi: 10.1016/j.solmat.2018.07.027.
  • [2] Fan, M. et al., “A Comparative Study on the Performance of Liquid Flat-Plate Solar Collector With a New V-Corrugated Absorber”, Energy Convers. Manag., vol. 184, pp. 235–248, 2019, doi: 10.1016/j.enconman.2019.01.044.
  • [3] Fiuk, J. J., Dutkowski, K. “Experimental Investigations on Thermal Efficiency of a Prototype Passive Solar Air Collector With Wavelike Baffles”, Sol. Energy, vol. 188, pp. 495–506, 2019, doi: 10.1016/j.solener.2019.06.030.
  • [4] Ural, T., “Experimental Performance Assessment of a New Flat-Plate Solar Air Collector Having Textile Fabric As Absorber Using Energy and Exergy Analyses”, Energy, vol. 188, p. 116116, 2019, doi: 10.1016/j.energy.2019.116116.
  • [5] Hürdoğan, E., Saydam, D. B., Çerçi, K. N., “Farklı Gıda Ürünlerinin Kuruma Karakteristiklerinin Güneş Enerji Destekli Bir Kurutucuda Deneysel Olarak Belirlenmesi”, Tesisat Mühendisliği, vol. 174, pp. 7–16, 2019.
  • [6] Zhang, H. et al., “Mathematical Modeling and Performance Analysis of a Solar Air Collector With Slit-Perforated Corrugated Plate”, Sol. Energy, vol. 167, pp. 147–157, 2018, doi: 10.1016/j.solener.2018.04.003.
  • [7] Fudholi, A., & Sopian, K., “A Review of Solar Air Flat Plate Collector for Drying Application”, Renewable and Sustainable Energy Reviews, 102, 333-345. 2019.
  • [8] Reddy, J., Das, B., & Negi, S., “Energy, Exergy and Environmental (3E) Analyses of Reverse and Cross-Corrugated Trapezoidal Solar Air Collectors: An Experimental Study”, Journal of Building Engineering, 41, 102434. 2021.
  • [9] Hernández, A. L., Quiñonez, J. E., “Experimental Validation of an Analytical Model for Performance Estimation of Natural Convection Solar Air Heating Collectors”, Renew. Energy, vol. 117, pp. 202–216, 2018, doi: 10.1016/j. renene.2017.09.082.
  • [10] Sorour, M. M., Mottaleb, Z. A., “Effects of Design Parameters on the Performance of Channel-Type Solar Energy Air Heaters With Corrugated Plates”, Appl. Energy, vol. 17, no. 3, pp. 181–190, 1984, doi: 10.1016/0306- 2619(84)90032-1.
  • [11] Alta, D., Bilgili, E., Ertekin, C., Yaldiz, O., “Experimental Investigation of Three Different Solar Air Heaters: Energy and Exergy Analyses”, Appl. Energy, vol. 87, no. 10, pp. 2953–2973, 2010, doi: 10.1016/j.apenergy.2010.04.016.
  • [12] Ramani, B. M., Gupta, A., Kumar, R., “Performance of a Double Pass Solar Air Collector”, Sol. Energy, vol. 84, no. 11, pp. 1929–1937, 2010, doi: 10.1016/j.solener.2010.07.007.
  • [13] Hu, J., Liu, K., Guo, M., Zhang, G., Chu, Z., Wang, M. “Performance Improvement of Baffle-Type Solar Air Collector Based on First Chamber Narrowing”, Renew. Energy, vol. 135, pp. 701–710, 2019, doi: 10.1016/j. renene.2018.12.049.
  • [14] Karsli, S., “Performance Analysis of New-Design Solar Air Collectors for Drying Applications”, Renew. Energy, vol. 32, no. 10, pp. 1645– 1660, 2007, doi: 10.1016/j.renene.2006.08.005.
  • [15] Ucar, A. Inallı, M., “Thermal and Exergy Analysis of Solar Air Collectors with Passive Augmentation Techniques”, Int. Commun. Heat Mass Transf., vol. 33, no. 10, pp. 1281– 1290,. 2006, doi: 10.1016/j.icheatmasstransfer.2006.08.006.
  • [16] Akpinar, E. K. Koçyiğit, F., “Energy and exergy Analysis of a New Flat-Plate Solar Air Heater Having Different Obstacles on Absorber Plates”, Appl. Energy, vol. 87, no. 11, pp. 3438–3450, 2010, doi: 10.1016/j.apenergy.2010.05.017.
  • [17] Hu, J., Guo, M., Guo, J., Zhang, G., & Zhang, Y., “Numerical and Experimental Investigation of Solar Air Collector With Internal Swirling Flow”, Renewable Energy, 162, 2259- 2271. 2020.
  • [18] Çalışkan, H., “Güneş Kollektörlerinin Enerji, Ekserji, Termoekolojik, Sürdürülebilirlik, Termoekonomik ve Eksergoekonomik Analizleri”, Engineer & the Machinery Magazine, 61(700). 2020.
  • [19] Özdemir, M. B., Yatarkalkmaz, M. M., “Farklı Tipteki Kolektörlerin Enerji, Ekserji ve Ekonomik Analizi”, Gazi Mühendislik Bilimleri Dergisi (GMBD), 1(2), 235-251. 2015.
  • [20] Alta, D., Bilgili, E., Ertekin, C., Yaldiz, O., “Experimental Investigation of Three Different Solar Air Heaters: Energy and Exergy Analyses”, Applied Energy, 87(10), 2953-2973. 2010.
  • [21] Bahrehmand, D., Ameri, M., Gholampour, M., “Energy and Exergy Analysis of Different Solar Air Collector Systems With Forced Convection”, Renewable Energy, 83, 1119-1130. 2015.
  • [22] Bahrehmand, D., Ameri, M., “Energy and Exergy Analysis of Different Solar Air Collector Systems With Natural Convection”, Renewable Energy, 74, 357-368. 2015.
  • [23] Saydam, D. B., Çerçi, K. N., Hürdoğan, E., Özalp, C., 2019, Manufacturing of a Finned Type Solar Air Collector and Investigation of Its Performance in Osmaniye Climate Conditions, UEMK 2019 Bildiriler Kitabı 24-25 Ekim 2019, Gaziantep, 1239-1247.
  • [24] Holman, J. P., Experimental Methods For Engineers, 2001
  • [25] Oztop. H.F., Bayrak. F., Hepbaslı. A. “Energetic and Exergetic Aspects of Solar Air Heating (Solar Collector) Systems”, Renewable and Sustainable Energy Reviews, 21, 59–83,.2013, http://dx.doi.org/ 10.1016/j.rser.2012.12.019.
  • [26] Torres-Reyes, E., Cervantes-de Gortari, J., Ibarra-Salazar, B., Picon-Nuñez, M., “A Design Method of Flat-Plate Solar Collectors Based on Minimum Entropy Generation”, Exergy, An Int. J., vol. 1, no. 1, pp. 46–52, 2001, doi: 10.1016/S1164-0235(01)00009-7.
  • [27] Abuşka M., “Energy and Exergy Analysis of Solar Air Heater Having New Design Absorber Plate With Conical Surface”, Appl. Therm. Eng., vol. 131, pp. 115–124, 2018, doi: 10.1016/j. applthermaleng.2017.11.129.
  • [28] Esen, H., “Experimental Energy and Exergy Analysis of a Double-Flow Solar Air Heater Having Different Obstacles On Absorber Plates”, Build. Environ., vol. 43, no. 6, pp. 1046–1054, 2008, doi: 10.1016/j.buildenv.2007.02.016.
  • [29] Bayrak, F., Oztop, H. F., Hepbasli, A., “Energy and Exergy Analyses of Porous Baffles Inserted Solar Air Heaters For Building Applications”, Energy Build., vol. 57, pp. 338–345, 2013, doi: 10.1016/j.enbuild.2012.10.055.
  • [30] Hürdoğan, E., Buyükalaca, O., Hepbasli, A., Yılmaz, T., “Exergetic Modeling and Experimental Performance Assessment of a Novel Desiccant Cooling System”, Energy Build., vol. 43, no. 6, pp. 1489–1498, 2011, doi: 10.1016/j.enbuild.2011.02.016.
  • [31] El-Khawajah, M. F., Egelioglu, F., & Ghazal, M., “Finned Single-Pass Solar Air Heaters With Wire Mesh as an Absorber Plate”, International Journal of Green Energy, 12(2), 108- 116. 2015.
  • [32] Fudholi, A., Sopian, K., Othman, M. Y., Ruslan, M. H., & Bakhtyar, B., “Energy Analysis and Improvement Potential of Finned Double-Pass Solar Collector”, Energy Conversion and Management, 75, 234-240. 2013
  • [33] El-Sawi, A. M., Wifi, A. S., Younan, M. Y., Elsayed, E. A., & Basily, B. B., “Application of Folded Sheet Metal in Flat Bed Solar Air Collectors”, Applied Thermal Engineering, 30(8- 9), 864-871. 2010.
  • [34] Fudholi, A., & Sopian, K., “A Review of Solar Air Flat Plate Collector for Drying Application”, Renewable and Sustainable Energy Reviews, 102, 333-345. 2019.
  • [35] Esen, H., “Experimental Energy and Exergy Analysis of a Double-Flow Solar Air Heater Having Different Obstacles on Absorber Plates”, Building and Environment, 43(6), 1046-1054. 2008.
  • [36] Sopian, K., Alghoul, M. A., Alfegi, E. M., Sulaiman, M. Y., & Musa, E. A., “Evaluation of Thermal Efficiency of Double-Pass Solar Collector With Porous–Nonporous Media”, Renewable Energy, 34(3), 640-645. 2009.
  • [37] Hu, J., Sun, X., Xu, J., & Li, Z., “Numerical Analysis of Mechanical Ventilation Solar Air Collector With Internal Baffles”, Energy and Buildings, 62, 230-238. 2013.
  • [38] Hu, J., & Zhang, G., “Performance Improvement of Solar Air Collector Based on Airflow Reorganization: A Review”, Applied Thermal Engineering, 155, 592-611. 2019.
  • [39] Hu, J., Liu, K., Ma, L., & Sun, X., “Parameter Optimization of Solar Air Collectors With Holes on Baffle and Analysis of Flow and Heat Transfer Characteristics”, Solar Energy, 174, 878-887. 2018.