Alttan Isıtma Sisteminin Kullanıldığı Bir Ofis Odasında Isıl Konfor ve İç Hava Kalitesinin Sayısal Olarak İncelenmesi

İklimlendirme sistemleri dünya enerji tüketiminde %40’lık bir paya sahiptir. Bu sistemler ofis odalarında yaygın olarak kullanılmakta ve performanslarının çalışanların üretkenliğine doğrudan etki ettiği bilinmektedir. Bu çalışmada alttan ısıtma ileısıtılan bir ofis odasında nefes alıp veren bir termal manken modeli yardımı ile havadağılımı, karbondioksite bağlı iç hava kalitesi ve ısıl konfor sayısal olarak araştırılmıştır. Ofis odası geometrisi için Uludağ Üniversitesi Mühendislik Fakültesi Makina Mühendisliği Bölümü öğretim üyesi ofislerinden birinin ölçüleri kullanılmıştır.Oda içerisindeki akış üç boyutlu, zamana bağlı, türbülanslı, çok fazlı (Mixture) vesıkıştırılabilir (ideal gaz yaklaşımı) olarak kabul edilmiştir. Scalable Wall Functionyaklaşımıyla Standard k-e türbülans modeli kullanılmıştır. Korunum denklemleriAnsys-Fluent 18.0 yazılımı kullanılarak çözülmüştür. Isıl konfor PMV (predictedmean vote), PPD (Predicted Percentage Dissatisfied) ve PD (Percent Dissatisfaction) ile ifade edilmiştir. Ofis odasının tanımlanan sınır şartlarına göre ısıl konforuve iç hava kalitesi incelenmiştir.

Numerical Investigation of Thermal Comfort and Indoor Air Quality in a Office Room Using Floor Heating System

Air conditioning systems use about 40% of global energy. These systems are widely used in office rooms and it is known that their performance directly affects the productivity of employees. In this study, air distribution, , indoor air quality based on carbondioxide and thermal comfort are investigated numerically by using a breathing thermal mannequin model in an office room which is heated by underfloor heating. For office room geometry, the measurements of one of the faculty member offices of Uludag University Faculty of Engineering Department of Mechanical Engineering is used. The air flow in the room is considered as three-dimensional, time-dependent, turbulent, multiphase and compressible (ideal gas approach). Standard k-e turbulence model is used with Scalable Wall Function. Conservation equations were solved using the Ansys-Fluent 18.0 software. Thermal comfort is indicated by PMV (Predicted Mean Vote), PPD (Predicted Percentage Dissatisfied) and PD (Percent Dissatisfaction). Thermal comfort and indoor air quality were examined according to the defined boundary conditions of the office room.

___

  • [1] UNEP United Nations Environment Programme Sustainable Buildings and Climate Initiative, “Why Buildings”, 2017. [Online]. Available: http://staging.unep.org/sbci/ AboutSBCI/Background.asp. [Accessed: 30- Jun-2017].
  • [2] T. Akimoto, S. ichi Tanabe, T. Yanai, and M. Sasaki, “Thermal Comfort and Productivity - Evaluation of Workplace Environment in a Task Conditioned Office”, Build. Environ., vol. 45, no. 1, pp. 45–50, 2010.
  • [3] S. Tanabe, M. Haneda, and N. Nishihara, “Workplace Productivity and Individual Thermal Satisfaction”, Build. Environ., vol. 91, pp. 42–50, 2015.
  • [4] J. Niu, N. Gao, M. Phoebe, and Z. Huigang, “Experimental study on a Chair-Based Personalized Ventilation System”, Build. Environ., vol. 42, no. 2, pp. 913–925, 2007.
  • [5] H. B. Awbi, “Energy Efficient Room Air Distribution”, Renew. Energy, vol. 15, no. 1–4, pp. 293–299, 1998.
  • [6] H. B. Awbi, “Ventilation for Good Indoor Air Quality and Energy Efficiency”, in Energy Procedia, 2017, vol. 112, pp. 277–286.
  • [7] Y. Xu, X. Yang, C. Yang, and J. Srebric, “Contaminant Dispersion with Personal Displacement Ventilation, Part I: Base Case Study”, Build. Environ., 2009.
  • [8] J. M. Villafruela, I. Olmedo, M. Ruiz de Adana, C. Méndez, and P. V. Nielsen, “CFD Analysis of the human Exhalation Flow Using Different Boundary Conditions and Ventilation Strategies”, Build. Environ., 2013.
  • [9] J. K. Gupta, C. H. Lin, and Q. Chen, “Characterizing Exhaled Airflow from Breathing and Talking”, Indoor Air, 2010.
  • [10] X. Xie, Y. Li, A. T. Y. Chwang, P. L. Ho, and W. H. Seto, “How Far Droplets Can Move in Indoor Environments - Revisiting the Wells Evaporation-Falling Curve”, Indoor Air, 2007.
  • [11] J. K. Gupta, C. H. Lin, and Q. Chen, “Transport of Expiratory Droplets in an Aircraft Cabin”, Indoor Air, 2011.
  • [12] P. V Nielsen, “Computational Fluid Dynamics and Room Air Movement”, Indoor Air, vol. 14 Suppl 7, no. Suppl 7, pp. 134–43, 2004.
  • [13] A. S. Berrouk, A. C. K. Lai, A. C. T. Cheung, and S. L. Wong, “Experimental Measurements and large Eddy Simulation of Expiratory Droplet Dispersion in a Mechanically Ventilated Enclosure With Thermal Effects”, Build. Environ., 2010.
  • [14] J. M. Villafruela, I. Olmedo, M. Ruiz de Adana, C. Méndez, and P. V. Nielsen, “CFD Analysis of the Human Exhalation Flow Using Different Boundary Conditions and Ventilation Strategies”, Build. Environ., vol. 62, pp. 191–200, 2013.
  • [15] ISO, “ISO 7730: Ergonomics of the Thermal Environment Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria”, Management, vol. 3, pp. 605–615, 2005.
  • [16] P. O. Fanger, A. K. Melikov, H. Hanzawa, and J. Ring, “Turbulence and Draft”, ASHRAE J., vol. 31, no. 4, 1989.
  • [17] A. Standard, “ASHRAE Handbook 2009 Fundamentals (SI Edition)”, Ashrae Stand., pp. 24–25, 2009.