Binalarda Kullanılan EPS Yalıtım Malzemesinin Farklı Yoğunluklara Göre Isıl İletkenliğinin Deneysel ve Sayısal İncelenmesi

Binalarda enerji kayıplarının azaltılması günümüzde önemli bir konudur. Bu amaçla enerji kayıplarını azaltmak için uygun ısı yalıtım malzemesinin kullanılması gerekir. Bu çalışmada binalarda kullanılan EPS yalıtım malzemesinin iç yapı görüntüleri kullanılarak elde edilen 2 boyutlu çizimlerin sayısal analiz sonuçlarının deneysel sonuçlar ile karşılaştırması yapılmıştır. Ek olarak farklı yoğunluktaki malzemenin ısıl iletkenliği nasıl etkilediği incelenmiştir. Sonuç olarak her yoğunluk değeri için örnek bir binanın 3 farklı bölgede olması durumunda özgül ısı kaybı belirlenerek farklı yoğunluk değerindeki yalıtım malzemesinin ısıtma ihtiyacını ne oranda etkilediği belirlenmiştir.

The Numerical and Experimental Investigation of Thermal Conductivity of EPS Insulation Material Used in Buildings According to Different Density

Nowadays, reducing energy losses in buildings is an important issue. Therefore, appropriate heat insulation material must be used to reduce energy losses. In this study, the comparison of numerical analysis, which is made from two dimension drawings, with experimental results were made by using internal structure images of EPS insulation materials. Additionally, thermal conductivity of EPS was investigated according to different mass density. Consequently, specific heat loss was determined in the case of 3 different regions for sample building and it is determined how the insulation material that have different density values influence the heating requirement.

___

  • KAYNAKLAR Pérez-Lombard, L., J. Ortiz, and C. Pout, A Review On Buildings Energy Consumption Information, Energy and Buildings, 2008, 40(3): p. 394-398. Yang, L., H. Yan, and J. C. Lam, Thermal Comfort And Building Energy Consumption Implications-A Review, Applied Energy, 2014, 115: p. 164-173. Büyükalaca, O. and H. Bulut, Detailed Weather Data For The Provinces Covered By The Southeastern Anatolia Project (GAP) of Turkey, Applied Energy, 2004, 77(2): p. 187-204. Al-Sanea, S. A., et al., Heat Transfer Characteristics and Optimum Insulation Thickness for Cavity Walls. Journal of Building Physics, 2003, 26(3): p. 285-307. Bolattürk, A., Determination of Optimum Insulation Thickness For Building Walls With Respect To Various Fuels And Climate Zones In Turkey. Applied Thermal Engineering, 2006, 26(11-12): p. 1301-1309. Dombaycı, Ö. A., M. Gölcü and Y. Pancar, Optimization Of Insulation Thickness For External Walls Using Different Energy-Sources, Applied Energy, 2006, 83(9): p. 921-928. Sisman, N., et al., Determination Of Optimum Insulation Thicknesses Of The External Walls And Roof (Ceiling) For Turkey’s Different Degree-Day Regions, Energy Policy, 2007, 35(10): p. 5151-5155. Bolattürk, A., Optimum Insulation Thicknesses For Building Walls With Respect To Cooling And Heating Degree-Hours In The Warmest Zone Of Turkey, Building and Environment, 2008, 43(6): p. 1055- 1064. Kaynakli, O., A Study On Residential Heating Energy Requirement And Optimum Insulation Thickness, Renewable Energy, 2008, 33(6): p. 1164-1172. Yu, J., et al., A Study On Optimum Insulation Thicknesses Of External Walls In Hot Summer And Cold Winter Zone Of China, Applied Energy, 2009, 86(11): p. 2520-2529. Fertelli, A., Determination Of Optimum Insulation Thickness For Different Building Walls In Turkey, Transactions Of Famena, 2013, 2. Bektas Ekici, B., A. Aytac Gulten, and U. T. Aksoy, A Study On The Optimum Insulation Thicknesses Of Various Types Of External Walls With Respect To Different Materials, Fuels And Climate Zones In Turkey, Applied Energy, 2012, 92: p. 211-217. Ozel, M., Thermal Performance And Optimum Insulation Thickness Of Building Walls With Different Structure Materials, Applied Thermal Engineering, 2011, 31(17-18): p. 3854-3863. Mendes, N., et al., Moisture Effects On Conduction Loads, Energy and Buildings, 2003, 35(7): p. 631-644. Kong, F. and M. Zheng, Effects Of Combined Heat And Mass Transfer On Heating Load In Building Drying Period, Energy and Buildings, 2008, 40(8): p. 1614-1622. Liu, X., et al., Numerical Investigation For Thermal Performance Of Exterior Walls Of Residential Buildings With Moisture Transfer In Hot Summer And Cold Winter Zone Of China, Energy and Buildings, 2015, 93: p. 259-268. Liu, X., et al., Determination Of Optimum Insulation Thickness For Building Walls With Moisture Transfer In Hot Summer And Cold Winter Zone Of China, Energy and Buildings, 2015, 109: p. 361- 368. Schellenberg, J. and M. Wallis, Dependence of Thermal Properties of Expandable Polystyrene Particle Foam on Cell Size and Density. Journal of Cellular Plastics, 2010, 46(3): p. 209-222. Mıhlayanlar, E., Ş. Dilmaç, and A. Güner, Analysis Of The Effect Of Production Process Parameters And Density Of Expanded Polystyrene Insulation Boards On Mechanical Properties And Thermal Conductivity, Materials & Design, 2008, 29(2): p. 344-352. K. T. Yucel, C.B., C. Ozel Thermal Insulation Properties Of Expanded Polystyrene As Construction And Insulating Materials, 15th Symposium on Thermophysical Properties, NIST/ASME, Boulder, Colorado, 2003, p. 54–66. Lakatos, Á. and F. Kalmár, Investigation Of Thickness And Density Dependence Of Thermal Conductivity Of Expanded Polystyrene Insulation Materials, Materials and Structures, 2012, 46(7): p. 1101-1105. Roels, S., et al., A Comparison of Different Techniques to Quantify Moisture Content Profiles in Porous Building Materials, Journal of Building Physics, 2004, 27(4): p. 261-276. Karamanos, A., S. Hadiarakou, and A.M. Papadopoulos, The Impact Of Temperature And Moisture On The Thermal Performance Of Stone Wool, Energy and Buildings, 2008, 40(8): p. 1402-1411. Ochs, F., W. Heidemann, and H. Müller-Steinhagen, Effective Thermal Conductivity Of Moistened Insulation Materials As A Function Of Temperature, International Journal of Heat and Mass Transfer, 2008, 51(3-4): p. 539-552. Jerman, M. and R. Černý, Effect Of Moisture Content On Heat And Moisture Transport And Storage Properties Of Thermal Insulation Materials, Energy and Buildings, 2012, 53: p. 39-46. Lakatos, A. and F. Kalmar, Analysis Of Water Sorption And Thermal Conductivity Of Expanded Polystyrene Insulation Materials, Building Services Engineering Research and Technology, 2012, 34(4): p. 407-416. Yu, Q., B. E. Thompson, and A. G. Straatman, A Unit Cube-Based Model for Heat Transfer and Fluid Flow in Porous Carbon Foam, Journal of Heat Transfer, 2006, 128(4): p. 352. Bouvard, D., et al., Characterization And Simulation Of Microstructure And Properties Of Eps Lightweight Concrete. Cement and Concrete Research, 2007, 37(12): p. 1666-1673. Jose Angel, D. D. L. P., et al., Microstructure Characterization of Low Density EPS. Applied Mechanics and Materials, 2013, 420: p. 167-176. Plastics, B., Technical Information, in Styropor CD, 1992.