Akış Analizleri (CFD) ve Mühendislik Süreçlerine Katkıları

Bildiri kapsamında; bilgisayar destekli mühendislik (CAE) dallarından biri olanhesaplamalı akışkanlar dinamiğinin (CFD) tesisat mühendisliği alanı başta olmaküzere mühendislik süreçlerine nasıl katkılar sunduğu aktarılacaktır. Öncelikle,CFD kavramının ne olduğu ve ne olmadığı ile kapsadığı alt disiplinler ve aralarındakurduğu ilişkiler vurgulanırken, uygulamada fiziksel deneyler ile alternatif veyatamamlayıcı konumlandırıldığı durumlar örneklerle ifade edilecektir. Akademikaraştırmalar ve ticari mühendislik iş akışları göz önünde bulundurulduğunda; akışanalizlerinin genel mühendislik süreçlerine verimli bir şekilde adaptasyonu ile akışanaliz sürecinin alt başlıkları örneklerle desteklenerek detaylandırılacaktır.

Flow Simulations (CFD) and its Contributions to Engineering Processes

This study covers the contributions of computational fluid dynamics (CFD), as a computer aided engineering (CAE) branch, on engineering processes with a special focus on HVAC and sanitary engineering. Starting with a definition of the CFD concept, the sub-disciplines covered and their interrelations are underlined while positioning of CFD with respect to physical experiments as an alternative and complementary are mentioned with example applications. Considering the academic research and commercial engineering workflows; the efficient adaptation of flow simulations to general engineering processes and sub-tasks of flow simulation are elaborated and demonstrated by examples.

___

  • [1] Adjiski, V., Mirakovski, D., Despodov, Z., & Mijalkovski, S. (2015). Simulation and Optimization of Evacuation Routes in Case of Fire in Underground Mines, Journal of Sustainable Mining, 133-143.
  • [2] Aksenov, A., Pokhilko, V., Yushenko, A., Butz, B., Sridhar, P., D’souza, K., Vucinic, D. (2016). Numerical Modeling and Simulations of Human Heartbeat as Fluid-Structure Interaction Multiphysics Phenomena, 3rd International Conference on Computational Methods in Engineering and Health Sciences, Fukuoka: Kyushu Institute of Technology.
  • [3] Blocken, B., Druenen, T. V., Toparlar, Y., Malizia, F., Mannion, P., Anadrianne, T., Diepens, J. (2018). Aerodynamic Drag in Cycling Pelotons: New Insights by CFD Simulation and Wind Tunnel Testing, Journal of Wind Engineering and Industrial Aerodynamics, 319-337.
  • [4] Dassault Systemes. (2019, Ocak 13). The Living Heart Project. Dassault Systems İnternet Sitesi: https://www.3ds.com/products-services/ simulia/solutions/life-sciences/the-livingheart- project/ adresinden alındı
  • [5] Dyadkin, A. A., Krylov, A. N., Reshetin, A. G., Semenov, Y. P., Simakova, T. V., Tokarev, V. A., & Kazakov, M. N. (tarih yok), Aerodynamic of Reentry Spacecraft Clipper, European Conference for Aerospace Sciences.
  • [6] Güler, T., Soğanci, S., & Tutkun, M. O. (2018). Laminar Air Flow Simulation of a Coil with Real Geometry, Porous Medium, and Gap Model in FlowVision, 13. International HVAC+R&Sanitary Technology Symposium, İstanbul: Türk Tesisat Mühendisleri Derneği.
  • [7] Hunt, J. (1998). Lewis Fry Richardson and His Contributions to Mathematics, Meteorology, and Models of Conflict, Annu. Rev. Fluid Mech., xiii-xxxvi.
  • [8] Milne-Thomson, L. M. (1973). Theoretical Aerodynamics, New York: Dover Publications.
  • [9] Richardson, L. F. (1922). Weather Prediction by Numerical Process, Cambridge: Cambridge, The University Press.
  • [10] Simscale. (2019, Ocak 13). Builders Beware! Things All Architects and Civil Engineers Should Know, Simscale Blog: https://www. simscale.com/blog/2018/07/architects-civil- engineers/ adresinden alındı
  • [11] Sung, M.-F., Chen, C.-F., Liu, C.-H., & Yu, C.- J. (2017). FlowVision & Abaqus 2-Way Strongly Coupled FSI Simulation of Automobile Tire Aquaplaning, Science in the Age of Experience, Chicago: Dassault Systemes.