Functional nano and micro-scale thin film deposition on textiles: Emerging technologies and applications

Bu çalışma tekstiller üzerinde fonksiyonel malzemelerin homojen filmlerini üretmek için kullanılan gelişmiş teknolojileri ele almaktadır. Bu teknolojiler, fiziksel buhar depolama, atomik tabakalı kaplama, kimyasal buhar depolama teknikleri ve çok tabakalı kaplama yöntemlerini kullanarak tekstil yüzeylerinde nano ve mikro-boyutta kaplamaların geliştirilmesini içermektedir. Elektromanyetik kalkanlama, antibakteriyel etki, ısı veya UV radyasyon dayanımı, elektriksel iletkenlik, leke ve yağ tutmazlık, kendi kendini temizleme, kimyasal dayanım ve alev geciktiricilik gibi fonksiyonellikler, bu yöntemlerle, mukavemet, tutum ve rahatlık özelliklerine minimum etki ederek tekstillere kazandırılırlar.

Tekstil yüzeylerinde nano ve mikro ölçekte fonksiyonel ince film depolanması: Gelişen teknolojiler ve uygulamalar

This paper discusses the emerging technologies to produce uniform films of functional materials on textiles. These include development of nano-coatings and micro-scale coatings using physical vapor deposition, atomic layer deposition, chemical vapor deposition techniques, and layer-by-layer deposition on textile substrates. Functionalities are added by these processes to textiles such as electromagnetic shielding, antibacterial efficacy, heat or UV radiation resistance, electrical conductivity, soil and oil release, self cleaning, chemical resistance and flame retardancy, with minimum effect on the strength, handle or comfort properties.

___

  • 1. Wei, Q., Xu, Q., Cai, Y., Wang, Y., (2008), “Evaluation of the interfacial bonding between fibrous substrate and sputter coated copper”, Surface & Coatings Technology, 202, 4673– 4680.
  • 2. Deng, B., Yan, X., Wei, Q., Gao, W., (2007), “AFM Characterization of nonwoven material functionalized by ZnO sputter coating”, Materials Characterization, 58, 854–858.
  • 3. Xu, Y., Wei, Q. F., Wang, Y. Y., Huang, F. L., (2007), “Preparation of TiO2 coated on fabrics and their photocatalytic reactivity”, Journal of Donghua University, 24, 333–336.
  • 4. Jiang, S.X., Qin, W.F., Guo, R.H., Zhang, L., (2010) “Surface functionalization of nanostructured silver-coated polyester fabric by magnetron sputtering”, Surface & Coatings Technology, 204, 3662–3667.
  • 5. Wei, Q., Yu, L., Hou, D., Huang, F., (2008), “Surface characterization and properties of functionalized nonwoven”, Journal of Applied Polymer Science, 107, 132–137.
  • 6. Wei, Q., Yu, L., Wu, N., Hong, S., (2008), “Preperation and characterization of copper nanocomposite textiles”, Journal of Industrial Textiles, 37 (3), 275–283.
  • 7. Wei, Q., (2009), “Surface modification of textiles”, Woodhead Publishing in Textiles, The Textile Institute.
  • 8. Gulrajani, M.L., Gupta, D., (2011), “Emerging techniques for functional finishing of textiles”, Indian Journal of Fibre & Textile Research, 36, 388–397.
  • 9. Chen, W., McCarthy, T.J., (1997), “Layer-by-layer deposition: a tool for polymer surface modification”, Macromolecules, 30, 78-86.
  • 10. Uğur S.S., Sarıışık, M., Aktaş A.H., (2011), “Nano-Al2O3 multilayer film deposition on cotton fabrics by layer-by-layer deposition method”, Materials Research Bulletin, 46, 1202– 1206.
  • 11. Uğur S.S., Sarıışık, M., Aktaş A.H., Uçar M.C., Erden E., (2010), “Modifying of cotton fabric surface with nano-zno multilayer films by layer-by-layer deposition method”, Nanoscale Res. Lett., 5, 1204–1210.
  • 12. George, S.M., (2010), “Atomic layer deposition: an overview”, Chem. Rev., 110, 111–131.
  • 13. Hyde, G.K., Scarel, G., Spagnola, J.C., Peng, Q., Lee, K., Gong, B., Roberts, K.G., Roth, K.M., Hanson, C.A., Devine, C.K., Stewart, S.M., Hojo, D., Na, J., Jur, J.S:, Parsons, G.N., (2010), “Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics”, Langmuir, 26 (4), 2550–2558.
  • 14. Jur, J.S., Parsons, G., (2011), “Atomic layer deposition of Al203 and ZnO at atmospheric pressure in a flow tube reactor”, ACS Applied Materials & Interfaces, 3(2), 299–308.
  • 15. Jur, J.S., Spagnola, J.C., Lee, K., Gong, B., Peng, Q., Parsons, G., (2010), “Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers”, Langmuir, 26 (11) 8239–8244.
  • 16. Tai-Ran Hsu, (2002), MEMS & microsystems design and manufacture, McGraw-Hill, New York, USA.
  • 17. Bartos, P., Spatenka, P., Volfova, L., (2009), “Deposition of TiO2-based layer on textile substrate: theoretical and experimental study”, Plasma Process. Polym., 6, 897–901.
  • 18. Wang, R.X., Tao, X.M., Wang, Y., Wang, G.F., Shang, S.M., (2010), “Microstructures and electrical conductance of silver nanocrystalline thin films on flexible polymer substrates”, Surface & Coatings Technology, 204, 1206–1210.
  • 19. Shahidi, S., Ghoranneviss, M., Moazzenchi, B., Rashidi, A., Mirjalili, M., (2007), “Investigation of antibacterial activity on cotton fabrics with cold plasma in the presence of a magnetic field”, Plasma Process. Polym., 4, S1098–S1103.
  • 20. Xu, Y., Wu, N., Wei, Q., Pi, X., (2009), “Preparation and the light transmittance of Tio2 deposited fabrics”, J. Coat. Technol. Res., 6 (4), 549–555.
  • 21. Wei, Q., Shao, D., Deng, B., Xu, Y., (2009), “Comparative studies of polypropylene nonwoven sputtered with ITO and AZO”, Journal of Applied Polymer Science, 114, 1813–1819.
  • 22. Amberg, M., Grieder,K., Barbadoro, P., Heuberger,M., Hegemann, D., (2008), “Electromechanical behavior of nanoscale silver coatings on PET Fibers”, Plasma Process. Polym., 5, 874–880.
  • 23. Wei, Q. F., Wang, X.Q., Gao, W. D., (2004), “AFM and ESEM characterization of functionally nanostructured fibers”, Applied Surface Science, 236, 456–460.
  • 24. Zimmermann, R., Pfuch, A., Horn, K., Weissser, J., Heft, A., Röder, M., Linke, R., Schnabelrauch, M., Schimanski, A., (2011), “An approach to create silver containing antibacterial coatings by use of atmospheric pressure plasma chemical vapour deposition (APCVD) and combustion chemical vapour deposition (CCVD) in an economic way”, Plasma Process. Polym., 8, 295–304.
  • 25. http://conductivecomposites.com, October 2012.
  • 26. Bashir, T., Skrifvars, M., Persson, N.K., (2011), “Production of highly conductive textile viscose yarns by chemical vapor deposition technique: a route to continuous process”, Polym. Adv. Technol., 22, 2214–2221.
  • 27. Brunon, C., Chadeau, E., Oulahal, N., Grossiord, C., Dubost, L., Bessueille, F., Simon, F., Degraeve, P., Leonard, D., (2011), “Characterization of plasma enhanced chemical vapor deposition–physical vapor deposition transparent deposits on textiles to trigger various antimicrobial properties to food industry textiles”, Thin Solid Films, 519, 5838–5845.
  • 28. Dietzel, Y., Przyborowski, W., Nocke, G., Offermann, P., Hollstein, F., Meinhardt, J., (2000), “Investigation of PVD arc coatings on polyamide fabrics”, Surface and Coatings Technology, 135, 75–81.
  • 29. Wei, Q. F., Li, Q., Hou, D.Y., Yang, Z.T., Gao, W.D., (2006), “Surface characterization of functional nanostructures sputtered on fiber substrates”, Surface and Coatings Technology, 201, 1821–1826.
  • 30. Wei, Q. F., Tao, D., Du, Z.F., Cai, Y .B., Wu, N., Chen, L., (2008), “Surface nanostructures and dynamic contact angles of functionalized poly(ethylene terephthalate) fibers”, Journal of Applied Polymer Science, 109, 654–658.
  • 31. Deng, B.Y., Wei, Q. F., Gao, W. D., Yan, X., (2007), “Surface functionalization of nonwoven by aluminum sputter coating”, Fibres and Textiles in Eastern Europe, 15, 4, 90–92.
  • 32. Wei, Q., Xiao, X., Hou, D., Ye, H., Huang, F., (2008), “Characterization of nonwoven material functionalized by sputter coating of copper”, Surface & Coatings Technology, 202, 2535–2539.
  • 33. Körner, E., Rupper, P., Lübben, J.F., Ritter, A., Rühe, J., Hegemann, D., (2011), “Surface topography, morphology and functionality of silver containing plasma polymer nanocomposites”, Surface & Coatings Technology, 205, 2978–2984.
  • 34. Wei, Q., Wang, Y., Wang, X., Huang, F., Yang, S., (2007), “Surface nanostructure evolution of functionalized polypropylene fibers”, Journal of Applied Polymer Science, 106, 1243–1247.
  • 35. Wei, Q. F., Yu, L. Y., Hou, D. Y., Wang, Y., (2007), “Comparative studies of functional nanostructures sputtered on polypropylene nonwovens”, Epolymers, 039.
  • 36. Wang, H.B., Wang, J. Y., Wei, Q. F., Hong, J. H., Zhao, X. Y., (2007), “Nanostructured antibacterial silver deposited on polypropylene nonwovens”, Surface Review and Letters, 14, 533–557.
  • 37. Wang, H., Wang, J., Hong, J., Wei, Q., Gao, W., Zhu, Z., (2007), “Preparation and characterization of silver nanocomposite textile”, J. Coat. Technol. Res., 4 (1), 101– 106.
  • 38. Sonehara, M., Sato, T., Takasaki, M., Konishi, H., Yamasawa, K., Miura, Y., (2008), “Preparation and characterization of nanofiber nonwoven textile for electromagnetic wave shielding”, IEEE Transactions on Magnetics, 44 (11), 3107– 3110.
  • 39. Jianfeng, D. I., Wenqin, D. U., Fei, Y.U., Honjin, Q.I., (2009), “Multi-functional nanoscaled film deposited on PET non-woven by sputtering”, Advanced Materials Research, 79-82, 557–560.
  • 40. Scholz, J., Nocke, G., Hollstein, F., (2005), “Investigation on fabrics coated with precious metals using magnetron sputtering technique with regard to their anti-microbial properties”, Surface and Coatings Technology”, 192, 252– 256.
  • 41. Koprowska J., Ziaja J., Janukiewicz J., (2008), “Plasma metallization textiles as shields for electromagnetic fields”, IEEE.
  • 42. Lai K., Sun R.J., Chen M.Y., Wu H., Zha A.X., (2007), “Electromagnetic shielding effectiveness of fabrics with metallized polyester filaments”, Textile Research Journal, 77(4): 242–246.