The Effect of Various Textile Wastes on the Mechanical Properties of Composite Materials

The Effect of Various Textile Wastes on the Mechanical Properties of Composite Materials

As technology advances and people's needs rise, the amount of waste produced rises in tandem with increased productivity in every industry. In this study, mechanical properties of hybrid composite structures made from recycled textile waste (denim waste, human hair, and pantyhose waste) are compared to those of an E-glass plain-woven fabric reinforced composite structure (Charpy impact strength, drop-weight impact strength, tensile strength, and flexural strength). The vacuum-assisted resin transfer method is employed as the production method, with epoxy resin as the chosen matrix material. Except for tensile strength, the obtained results suggest that the mechanical properties of textile waste and E-glass fabric reinforced hybrid composite constructions can compete with those of pure E-glass fabric reinforced sample.

___

  • 1. Yalcin-Enis I., Kucukali-Ozturk M., Sezgin H. 2019. Risks and management of textile waste. In: Gothandam K., Ranjan S., Dasgupta N., Lichtfouse E. (eds) Nanoscience and Biotechnology for Environmental Applications. Environmental Chemistry for a Sustainable World, vol 22. Springer, Cham.
  • 2. Echeverria CA, Handoko W, Pahlevani F, Sahajwalla V. 2019. Cascading use of textile waste for the advancement of fibre reinforced composites for building applications. Journal of Cleaner Production 208, 1524-1536.
  • 3. Kamble Z, Behera BK. 2021. Sustainable hybrid composites reinforced with textile waste for construction and building applications. Construction and Building Materials 284, 122800.
  • 4. Lu JJ, Hamouda H. 2014. Current status of fiber waste recycling and its future. Advanced Materials Research 878, 122–131.
  • 5. Wang Y. 2010. Fiber and Textile Waste Utilization. Waste and Biomass Valorization 1, 135–143.
  • 6. Hawley JM. Textile recycling: a system perspective. In: Wang, Y. (ed.) Recycling in Textiles, pp. 7–24. Woodhead Publishing, 2016, Cambridge
  • 7. Kotliar A. 199. Wood-like properties from carpet and textile fibrous waste: mitigating the coming landfill crisis. Polymer-Plastics Technology and Engineering 38(3), 513–531.
  • 8. Briga-Sá A, Nascimento D, Teixeira N, Pinto J, Caldeira F, Varum H, Paiva A. 2013. Textile waste as an alternative thermal insulation building material solution. Construction and Building Materials 38, 155-160.
  • 9. Mishra R, Behera B, Militky J. 2014. Recycling of textile waste into green composites: Performance characterization. Polymer Composites 35(10), 1960-1967.
  • 10. Masood Z, Ahmad S, Umair M, Shaker K, Nawab Y, Karahan M. 2018. Mechanical behaviour of hybrid composites developed from textile waste. Fibres and Textiles in Eastern Europe 26, 46-52.
  • 11. Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard, MK, Weaver PM. 2014. Green composites: A review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing 56, 280–289.
  • 12. Yousef S, Tatariants S, Tichonovas M, Sarwar Z, Jonuškienė I, Kliucininkas L. 2019. A new strategy for using textile waste as a sustainable source of recovered cotton. Resources Conservation & Recycling 145, 359-369.
  • 13. Pensupa N, Leu SY, Hu Y, Du C, Liu H, Jing H, Wang H, Lin CSK. 2017. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects, In: Lin C. (eds) Chemistry and Chemical Technologies in Waste Valorization. Topics in Current Chemistry Collections. Springer, Cham.
  • 14. Yousef S, Tatariants M, Tichonovas M, Kliucininkas L, Lukosiute SI, Yan L. 2020. Sustainable green technology for recovery of cotton fibers and polyester from textile waste. Journal of Cleaner Production 254, 120078.
  • 15. Giridharan R, Jenarthanan MP. 2019. Preparation and characterisation of glass and cotton fibers reinforced epoxy hybrid composites. Pigment & Resin Technology 48(4), 272-276.
  • 16. Nanda BP, Satapathy A. 2020. Processing and thermal characteristics of human hair fiber-reinforced polymer composites. Polymers and Polymer Composites 28(4), 252-264.
  • 17. Hasret F, Agac S. 2021. A sustainable design example: Evaluation of pantyhose with bricolage and deconstruction method. Global Journal of Arts Education 11(1), 71-88.
  • 18. Guler S. 2018. The effect of polyamide fibers on the strength and toughness properties of structural lightweight aggregate concrete. Construction and Building Materials 173, 394-402.
  • 19. Jeon JK, Kim W, Jeon CK, Kim JC. 2014. Processing and mechanical properties of macro polyamide fiber reinforced concrete. Materials 7, 7634-7652.
  • 20. Jeon JK, Kim W, Kim GY, Jeon CK. 2016. Polyamide fiber reinforced shotcrete for tunnel application. Materials 9(3), 163.
  • 21. Nieto SPR, Giraldo ES, Pedrao D, Calderon G, Valbuena GCC. 2014. Influence of nylon on the tensile strength of a polymer matrix composite material. Tecciencia 9(16), 78-84.
  • 22. Temmink R, Baghaei B, Skrifvars M. 2018. Development of biocomposites from denim waste and thermoset bio-resins for structural applications. Composites Part A: Applied Science and Manufacturing 106, 59-69.
  • 23. Hassani P, Soltani P, Ghane M, Zarrebini M. 2021. Porous resin-bonded recycled denim composite as an efficient sound-absorbing material. Applied Acoustics 173, 107710.
  • 24. Oztemur J, Sezgin H, Yalcin-Enis I. 2021. Design of an impact absorbing composite panel from denim wastes and acrylated epoxidized soybean oil based epoxy resin. Textile and Apparel 31(3), 229 – 234.
  • 25. Meng X, Fan W, Mahari WAW, Ge S, Xia C, Wu F, Han L, Wang S, Zhang M, Hu Z, Ma NL, Le QV, Lam SS. 2021. Production of three-dimensional fiber needle-punching composites from denim waste for utilization as furniture materials. Journal of Cleaner Production 281, 125321.
  • 26. Sezgin H, Kucukali-Ozturk M, Berkalp OB, Yalcin-Enis I. Design of composite insulation panels containing 100% recycled cotton fibers and polyethylene/polypropylene packaging wastes. Journal of Cleaner Production 304, 127132.
  • 27. Meng X, Fan W, Ma Y, Wei T, Dou H, Yang X, Tian H, Yu Y, Zhang T, Gao T. 2020. Recycling of denim fabric wastes into high-performance composites using the needle-punching nonwoven fabrication route. Textile Research Journal 90(5-6), 695-709.
  • 28. Islam S, Messiry ME, Sikdar PP, Seylar J, Bhat G. 2020. Microstructure and performance characteristics of acoustic insulation materials from post-consumer recycled denim fabrics. Journal of Industrial Textiles, https://doi.org/10.1177/1528083720940746.
  • 29. Lu L, Fan W, Meng X, Liu T, Han L, Zhang T, Dong J, Yuan L, Tian H. 2021. Modal analysis of 3D needled waste cotton fiber/epoxy composites with experimental and numerical methods. Textile Research Journal 91(3-4), 358-372.
  • 30. Verma A, Singh V. 2019. Mechanical, microstructural and thermal characterization of epoxy-based human hair–reinforced composites. Journal of Testing and Evaluation 47(2), 1193-1215.
  • 31. Selvakumar K, Meenakshisundaram O. 2019. Mechanical and dynamic mechanical analysis of jute and human hair-reinforced polymer composites. Polymer Composites 40(3), 1132-1141.
  • 32. Ansari AA, Dhakad SK, Agarwal P. 2020. Investigation of mechanical properties of sisal fibre and human hair reinforced with epoxy resin hybrid polymer composite, Materials Today: Proceedings 26(2), 2400-2404.
  • 33. Balachandar M, Ramnath BV Kumar SA, Sankara GS. 2019. Experimental evaluation on mechanical properties of natural fiber polymer composites with human hair. Materials Today: Proceedings 16(2), 1304-1311.
  • 34. Khan RA, Khan MA, Zaman HU, Pervin S, Khan N, Sultana S, Saha M, Mustafa AI. 2010. Comparative studies of mechanical and interfacial properties between jute and E-glass fiber-reinforced polypropylene composites. Journal of Reinforced Plastics and Composites 29(7), 1078-1088.
  • 35. Popescu C, Höcker H. 2007. Hair—the most sophisticated biological composite material. Chemical Society Reviews 36, 1282-1291.
  • 36. Portella EH, Romanzini D, Angrizani CC, Amico SC, Zattera AJ. 2016. Influence of stacking sequence on the mechanical and dynamic mechanical properties of cotton/glass fiber reinforced polyester composites. Materials Reseacrh 19(3), 542-547.
  • 37. Zeeshan M, Ali M, Anjum AS, Nawab Y. 2019. Optimization of mechanical/thermal properties of glass/flax/waste cotton hybrid composite. Journal of Industrial Textiles. https://doi.org/10.1177/1528083719891420.
  • 38. Velasco MVR, Dias TCDS, Freitas AZD, Júnior NDV, Pinto CASDO, Kaneko TM, Baby AR. 2009. Hair fiber characteristics and methods to evaluate hair physical and mechanical properties, Brazilian Journal of Pharmaceutical Sciences 45(1), 153-162.
  • 39. Lampeas G. 2020. Cellular and Sandwich Materials. In Pantelakis S and Tserpes K. (Eds) Revolutionizing Aircraft Materials and Processes. Cham: Springer, 137-162.
  • 40. Skrifvars M, Dhakal H, Zhang Z, Gentilcore J, Åkesson D. 2019. Study on the mechanical properties of unsaturated polyester sandwich biocomposites composed of uniaxial warp-knitted and non-woven viscose fabrics. Composites Part A: Applied Science and Manufacturing 121, 196–206.
  • 41. Haery HA, Zahari R, Kuntjoro W, et al. 2014. Tensile strength of notched woven fabric hybrid glass, carbon/epoxy composite laminates. Journal of Industrial Textiles 43: 383–395.
  • 42. Campbell FC. 2010. Structural Composite Materials. ASM International.
Tekstil ve Konfeksiyon-Cover
  • ISSN: 1300-3356
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma & Uygulama Merkezi