ŞANTUK İPLİKTEN ÜRETİLMİŞ DOKUMA KUMAŞLARIN HAVA GEÇİRGENLİĞİNİN İNCELENMESİ

Bu çalışmadaki amaç, şantuk iplik yapısının dokuma kumaşın hava geçirgenliği özelliği üzerindeki etkisini incelemektir. Bu amaçla, şantuk uzunluğu, şantuk mesafesi, şantuk kalınlığı ve iplik numarası kontrol faktörleri olarak belirlenmiş ve Taguchi L9 ortogonal dizaynına göre farklı özelliklerde şantuk iplikler üretilmiştir. Bu ipliklerden 1/3 dimi kumaşlar dokunarak hava geçirgenliği özellikleri istatistiksel olarak analiz edilmiştir. Kumaşın son kullanım amacına göre “hedef değer en iyi” olarak değerlendirilen hava geçirgenliği için optimum iplik parametreleri tespit edilmiştir. Analizler, şantuk kalınlığının hava geçirgenliği üzerinde en etki faktör olduğunu göstermiştir.

EVALUATION OF AIR PERMEABILITY OF FABRICS WOVEN WITH SLUB YARNS

The aim of this research was to analyse the influence of slub yarn structure on air permeability of woven fabrics. Slub length, slub distance, amplitude of slub and yarn linear density were used as control factors to produce slub yarns with varying properties according to Taguchi L9 orthogonal design. Twill 1/3 woven fabrics were produced with these slub yarns and air permeability results were statistically analysed. Optimum yarn parameters were determined for air permeability which was considered as nominal-the-better property according to the end-use purposes of the fabric. The analysis results showed that slub thickness had the most significant effect on air permeability.

___

  • 1. Tokarska, M., 2008, “Analysis of Impact Air permeability of Fabrics”, Fibres and Textiles in Eastern Europe, Vol. 16, No. 1, pp. 76-80.
  • 2. Milašius, V., Milašius, R., Kumpikaitė, E., Olšauskienė, A., 2006, “Influence of Fabric Structure on some Technological and End-use Properties”, Fibres and Textiles in Eastern Europe, Vol. 11, No. 3, pp. 49-52.
  • 3. İlhan, İ., Babaarslan, O., & Vuruşkan, D., 2012, “Effect of descriptive parameters of slub yarn on strength and elongation properties”, Fibres & Textiles in Eastern Europe, Vol. 20, pp. 33-38.
  • 4. Veselá D, Kůs Z., 2016, “Device for Measurement of Static and Dynamic Air Permeability and Deformation Changes in Textile Materials”, Fibres & Textiles in Eastern Europe, Vol. 24, 1(115): 120-126.
  • 5. Čiukas, R., Abramavičiūtė, J., 2010, “Investigation of the Air Permeability of Socks Knitted from Yarns with Peculiar Properties”, Fibres & Textiles in Eastern Europe, Vol. 18, No. 1 (78), pp. 84-88.
  • 6. Ogulata, R.T., 2006, “Air Permeability of Woven Fabrics”, Journal of Textile and Apparel, Technology and Management, Vol. 5, No. 2, pp. 1-10.
  • 7. Asanovıc et al., 2015, “Quality of clothing fabrics in terms of their comfort properties”, Indian Journal of Fibre & Textile Research, Vol. 40, pp. 363-372.
  • 8. Kumpikaite, E., Ragaišiene, A., Barburski, M., 2010, “Comparable Analysis of the End-Use Properties of Woven Fabrics with Fancy Yarns. Part I: Abrasion Resistance and Air Permeability”, Fibres & Textiles in Eastern Europe, Vol. 18, No. 3 (80), pp. 56-59.
  • 9. Seyam, Aly El-Shiekh, 1995, “Mechanics of Woven Fabrics Part V: Impact of Weavability Limit Parameters on Properties of Fabrics from Yarns with Thickness Variation”, Textile Research Journal, Vol. 65, No. 1, pp. 14-25.
  • 10. Liu, J., Xie, Z., Gao, W., Jiang, H., 2010, “Automatic Determination of Slub Yarn Geometrical Parameters Based on an Amended Similarity-based Clustering Method”, Textile Research Journal, Vol. 80, No. 11, pp. 1075-1082.
  • 11. Ilhan, I., Babaarslan, O., Vuruskan, D, 2012, “Effect of Descriptive Parameters of Slub Yarn on Strength and Elongation Properties”, Fibres & Textiles in Eastern Europe, Vol. 20, No. 3, pp. 33-38.
  • 12. Su, XZ., Gao, WD., Liu, XJ., Xie, CP., Zhu, Y., 2014, “Numerical analysis of the slub yarn breaking strength using finite element method”, Indian Journal Of Fibre & Textile Research, Vol. 39,No. 4, pp. 437-440.
  • 13. Liu, J., Xie, Z., Gao, W., et al., 2010, “Automatic Determination of Slub Yarn Geometrical Parameters Based on an Amended Similarity-based Clustering Method”, Textile Research Journal, Vol. 80, No. 11, pp. 1075-108.
  • 14. Liu, J., Li, Z., Lu, Y., et al., 2010, “Visualisation and Determination of the Geometrical Parameters of Slub Yarn”, Fibres & Textiles In Eastern Europe, Vol. 18, No. 1, pp. 31-35.
  • 15. Gao, R., Gong, RH., 2004, “3D modelling of fancy yarn”, Quality Textiles For Quality Life, Vol. 1-4, pp. 1290-1293.
  • 16. Xu, BJ., Yu, CW., 2004, “Cad and simulation for fabric appearance effect woven by slub yarn”, Quality Textiles For Quality Life, Vol. 1-4, pp. 1380-1383.
  • 17. Kowalski, K., Ledwon, J., 1999, “Computer modelling of patterns on fabrics made from fancy yarns on weft knitting machines and of slub repeats of the yarns”, Fibres & Textiles In Eastern Europe, Vol. 7, No. 1, pp. 42-44.
  • 18. Taguchi G., Taguchi Methods Design of Experiments, Quality Engineering Series 4, American Supplier Institute Inc., Michigan, 1993.
  • 19. Umair, M., Hussain, T., Shaker, K., Nawab, Y., Maqsood, M., & Jabbar, M., 2016, “Effect of woven fabric structure on the air permeability and moisture management properties”, The Journal of The Textile Institute, Vol. 170, No. 5, 596–605.
  • 20. Vimal, J. T., Murugan, R., Subramaniam, V, 2016, “Effect of Weave Parameters on the Air Resistance of Woven Fabrics”, Fibres & Textiles in Eastern Europe, Vol. 24, No. 1(115), pp. 67-72.
Tekstil ve Konfeksiyon-Cover
  • ISSN: 1300-3356
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma & Uygulama Merkezi