MODELING AND KINETIC STUDIES ON THE SPREADING PHENOMENON OF INK JET PRINTING OVER POLYESTER FABRIC

MODELING AND KINETIC STUDIES ON THE SPREADING PHENOMENON OF INK JET PRINTING OVER POLYESTER FABRIC

The present research deals with an experimental study of the liquid drop through polyester fabric in the spreading regime with no splashing. First, the wetting phenomenon parameters are characterized by the digidrop 3S permitting us to measure correctly the contact angle, the diameter, the height, the volume and the drop profile in contact with porous fabric during experiment time. Results exhibited that the liquid drop impact shows the presence of three different phases. Then, a mathematical model is developed in order to interpret the experimental data in terms of kinetic spreading, evaporation and diffusion phenomena on the porous materials. The theoretical predictions agree well with the experimental data with high correlation coefficients. It is also proved that the kinetic wetting parameters depend on the structure of the woven fabric (weft count), the drop size and the surface tension. This study represents an important contribution for the understanding of the behavior of a liquid drop after its projection on the textile support and it could constitute a prototype of the industry of ink jet printing.

___

  • 1. Adamson, A.W. (1990). Physical Chemistry of Surfaces, 5th ed., John Wiley and Sons, New York, 493.
  • 2. Marmur, A., (1996). Contact angle: wettability and adhesion, Colloids and surface A., 116, 55-61.
  • 3. Hiemenz, P. and Rajagopalan, R., (1997). Principles of colloids and surfaces chemistry, Third Edition, New York,.
  • 4. Washburn, E. W., (1921). The dynamic of capillary flow, Physical Review Letters, 17, 273-283.
  • 5. Bell, J. M. and Cameron, F. K., (1906). The flow of liquids through capillary spaces, Journal of Physical Chemistry, 10(8), 658-674.
  • 6. Lucas, R., (1918). Ueber das Zeitgesetz des kapillaren Aufstiegs von Flussigkeiten, Kolloid Z., 23, 15-22.
  • 7. PeekJr, R. L. and McLean, D. A., (1934). capillary penetration of fibrous materials, Industrial and Engineering Chemistry: Analytical Edition, 6(2), 85-90.
  • 8. Gillespie, T., (1958). Detergency: Theory and technology, Journal of Colloids and Interface Science, 13, 32-40.
  • 9. Holman, K., M.J. Cima, Uhland, S. A., and Sachs, E., (2002). Spreading and infiltration of inkjet- printed polymer solution droplets on a porous substrate, Journal of Colloids Interface Science, 249, 432-440.
  • 10. Alleborn, N. and Raszillier, H., (2004). Spreading and sorption of droplets on layered porous substrates, Journal of Colloids and Interface Science, 280, 449-464.
  • 11. Style, R.W., Isa, L., and Dufresne, E. R., (2015). Adsorption of soft particles at fluid interfaces, Soft Matter., 11(37), 7412-419.
  • 12. Kumar, S. M. and Deshpande, A. P., (2006). Dynamics of drop spreading on fibrous porous media, Colloids and Surfaces A., 277, 157-163.
  • 13. Carlson, A., Royal Institute of Technology, Department of Mechanics SE-100 44 Stockholm, Sweden, Thesis, 2012.
  • 14. Wenzel, R. N., (1936). Resistance of solid surfaces to wetting by water, Industrial and Engineering Chemistry Research, 28(8), 988-994.
  • 15. Teletzke, G. F., Davis, T. H., and Scriven, L. E., (1987) Wetting hydrodynamics, Chemical Engineering Communications, 55, 41-81.
  • 16. Kubiak, K.J., Wilson, M.C.T., Mathia, T.G., and Carval, Ph., (2011) Wettability versus roughness of engineering surfaces, Wear, 271(3-4), 523-528.
  • 17. Harju, M., Levanen, E., and Mantyla, T., (2006). Wetting behavior of plasma sprayed oxide coatings, Applied Surface Science, 252, 8514-8520.
  • 18. Nosonovsky, M., and Bhushan, B., Biologically Inspired Surfaces: Broadening the Scope of Roughness Advanced Functional Materials, 18, (2008), 843- 855.
  • 19. Roach, P., Shirtcliffe, N. J., and Newton, M.I., (2008). Progress in Superhydrophobic Surface Development, Soft Matter, 4(2), 224-240.
  • 20. Kim, S.H., Lee, J.H., Lim, D.Y., and Jeon, H. Y., (2003). Dependence of sorptionproperties of fibrous assemblies on their fabrication and material characteristics, Textile Research Journal, 73(5), 455-460.
  • 21. Ramaratnam, K., Iyer, S.K., Kinnan, M. K., Chumanov, G., Brown, P. J., and Luzinov, I., (2008). Ultrahydrophobic textiles using nanoparticles : Lotus Approach, Journal of Engineering Fibers and Fabrics 3(4), 1-14.
  • 22. Hasan, M.M.B., Calvimontes, A., and Dutschk, V., (2008). Effects of topographic structure on wettability of differently woven fabrics, Textile Research Journal, 78(11), 996-1003.
  • 23. Babu, V. R., Raja, V. S. D., Kouhik, C.V., and Ramakrishnan, G., (2012). Horizontal liquid spreading behavior of hybrid yarn woven fabric using embedded image analysis principle, Indian Journal of Fibre and Textile research, 37, 381-384.
  • 24. Zouhaier, R., Ayda, B., Mohamed, H., and Roudesli, S, (2013). Drying Morphologies and Emport Rate Effect on Wetting and Spreading Behaviours, Fibers and Polymers, 14, 1157-1164.
  • 25. Zouhaier, R., Ayda, B., Mohamed, H., and Roudesli, S., (2014). Drop impact on textile material: effect of fabric properties, Autex Research Journal, 14, 145-151,
Tekstil ve Konfeksiyon-Cover
  • ISSN: 1300-3356
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma & Uygulama Merkezi