Crease resistant effect of modified N-methyloldihydroxyethyleneurea and softeners on cotton woven fabric

Bu çalışma, pamuklu kumaş özellikleri üzerine modifiye N-methyloldihydroxyethyleneurea (DMDHEU) ve yumuşatıcı tipi (yağ asidi, makro ve mikro polisiloksan, vaks ve polietilen) etkisini incelemeye odaklanmıştır. Bitim işleminden sonra FTIR spektrumunda 1250 ve 1730 cm-1 absorbans bandındaki görünüm, DMDHEU ve selülozun hidroksil grupları arasındaki eter bağlantılarının varlığını göstermektedir. Hem reçineler hem de yumuşatıcılar, Eko-Tex 100 standardına göre son derece düşük formaldehit salınım değerleri vermişlerdir. Farklı yumuşatıcı tiplerinin kumaşın renk değerleri ve kopma mukavemeti üzerine önemli etkisinin olduğu ve aynı tip yumuşatıcıların elektrik yükü farklılığının da önemli bir parametre olduğu bulunmuştur. Dolayısıyla böyle bir araştırma, endüstriyel uygulamalarda uygun yumuşatıcı tipini seçmek için yapılmıştır. İncelediğimiz özellikler göz önüne alındığında, non-iyonik vaks ve non-iyonik polietilen esaslı yumuşatıcıların pamuklu dokuma kumaşlar için en uygun yumuşatıcılar olduğu sonucuna varılmıştır

Pamuk dokuma kumaş üzerine modifiye edilmiş N-metiloldihidroksietilen üre ve yumuşatıcıların buruşmazlık etkisi

This study focuses on investigating effect of modified N-metiloldihidroksietilen üre (DMDHEU) and softener type (fatty acid, macro and micro polysiloxane, wax, and polyethylene) on properties of cotton fabric. The ether linkages between hydroxyl groups of DMDHEU and cellulose were confirmed by appearance of corresponding absorbance at 1730 and 1250 cm−1 in the FTIR spectrum after finishing. Both resins and softeners had extremely low formaldehyde release according to Oeko-Tex 100 standard. It is found that various softener types have significant effect on color evaluation and breaking strength of fabrics and the difference in electrical charge of same type softener is also an important parameter; hence such an investigation should be made to choose the suitable softener type for industrial applications. It is concluded that the softeners based on non-ionic wax and non-ionic polyethylene are the most suitable for softening application on cotton woven fabrics when considering the properties we examined.

___

  • 1. Petersen, H., Mark, H., Wooding, N.S. and Atlas, S.M., 1971, “Crosslinking chemicals and the chemical principles of the resin finishing of cotton in chemical aftertreatment of textiles”, New York:Wiley Interscience.
  • 2. Klemm, K., Bertram, P., Thomas, H., Ute, H., and Wagenknecht, W., 1998, “Comprehensive Cellulose Chemistry; Volume 1: Fundamentals and analytical methods”, New York:Wiley-VCH Verlag GmbH Weiheim.
  • 3. Welch, C.M. and Andrews, B. K., 1989, “Ester crosslinks: a route to high performance nonformaldehyde finishing of cotton”, Textile Chemist and Colorist, 21, 13-17.
  • 4. Choi, H., 1992, “Nonformaldehyde polymerization-crosslinking treatment of cotton fabrics for ımproved strength retention”, Textile Research Journal, 62(10), 614-618.
  • 5. Wei, W. and Yang, C.Q., 2000, “Polymeric Carboxylic acid and citric acid as a nonformaldehyde durable press finish”, Textile Chemist and Colorist, 32(2), 53-57.
  • 6. Xu, W. and Shyr, T., 2001, “Applying a nonformaldehyde crosslinking agent to ımprove the washing durability of fabric water repellency”, Textile Research Journal, 71(9), 751-754.
  • 7. Wakelyn, P.J., Bertoniere, N.R:, French, A.D., Thibodeaux, D.P., Triplett, B.A., Rousselle, M.A., Goynes, W.R., Edwards, J.V., Hunter, L., McAlister, D.D. and Gamble, G.R., 2006, “Cotton fiber chemistry and technology”. Boca Raton, FL: Taylor and Francis Group.
  • 8. Tae, J. K. and Min, S.K., 2001, “Effects of silicone treatments on the dimensional properties of wool fabric”, Textile Research Journal, 71(4), 295-300.
  • 9. Hes, L. and Fridrichova, L., 2003, “Drape angle-a new method of determination of drape of fabrics” Maribor, Slovenia, The IV th International Conference IMCEP 2003.
  • 10. Gunesoglu, C., Kut, D. and Orhan, M., 2007, “Effect of the particle size of finishing chemicals on the color assessment of treated cotton fabrics”, Journal of Applied Polymer Science, 104(4), 2587-2594.
  • 11. Wei, W. and Yang, C.Q., 2000, “Polymeric Carboxylic acid and citric acid as a nonformaldehyde durable press finish”, Textile Chemist and Colorist, 32(2), 53-57.
  • 12. Cooke, T.F. and Weigmann, H.D., 1982, “The chemistry of formaldehyde release from durable press fabrics”, Textile Chemist and Colorist, Volume 14, 100-106.
  • 13. Cooke, T.F. and Weigmann, H.D., 1982, “The chemistry of formaldehyde release from durable press fabrics”, Textile Chemist and Colorist, Volume 14, 136-144.
  • 14. Petersen, H., 1987, “The chemistry of crease-resist crosslinking agent”, Review of Progress in Coloration and Related Topics, June, 17(1), 7-22.
  • 15. Brodmann, G.L., 1990, “Performance of nonformaldehyde cellulose reactants”, Textile Chemist and Colorist, Volume 22, 13-16.
  • 16. Shet, R.T. and Yabani, A.M., 1981, “Crease recovery and tensile strength properties of unmodified and modified cotton cellulose treated with crosslinking agents” Textile Research Journal, 5(11), 740–744.
  • 17. Blanch, R.M., 1995, “Optimization of properties for wrinkle-free fabrics” American Dyestuff Reporter, Volume 84, 26-30.
  • 18. Kang, I.S., Yang, C.Q., Wai, W. and Lick Field, G.C., 1998, “Mechanical strength of durable press finished cotton fabrics- Part 1: Effects of acid degradation and cross linking of cellulose by polycarboxylic acid”, Textile Research Journal, Volume 68, 865-870.
  • 19. Xu, W. and Li, Y., 2000, “Cotton fabric strength loss from treatment with polycarboxylic acids for durable press performance”, Textile Research Journal, 70(11), 957-961.
  • 20. Abdel Mohdy, F.A., Aly, A.S. and Hebeish, A., 2004, “Antimicrobial and wrinkle resistance finishing for cotton using polycarboxylic acids”, Journal of Textile Association, Volume 65, 25-30.