Design of an Impact Absorbing Composite Panel from Denim Wastes and Acrylated Epoxidized Soybean Oil based Epoxy Resins

The focus of this work is to make a significant contribution to solid waste management by designing impact-absorbing bio-composite panels using bio-resin and denim wastes. In this context, composite panels are produced by vacuum infusion technique using both epoxy and acrylated epoxidized soybean oil (AESO) based hybrid resins while denim wastes are utilized as reinforcement materials in fiber and fabric forms. Both physical (fiber density and fiber weight ratio) and mechanical analyses (drop-weight impact resistance and dynamic mechanical analysis (DMA)) of the composites are performed. The outcomes of the study prove that the increase in the AESO ratio of the resin system improves the ductility of the composite and consequently the impact resistance. On the other hand, dynamic mechanical analysis results indicate that the AESO plug-in reduces the storage module and increases the damping factor.

___

  • Stanescu, M. D. (2021). State of the art of post-consumer textile waste upcycling to reach the zero waste milestone. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-12416-9
  • Echeverria, C. A., Handoko, W., Pahlevani, F., & Sahajwalla, V. (2019). Cascading use of textile waste for the advancement of fi bre reinforced composites for building applications. Journal of Cleaner Production, 208, 1524–1536. https://doi.org/10.1016/j.jclepro.2018.10.227
  • Shirvanimoghaddam, K., Motamed, B., Ramakrishna, S., & Naebe, M. (2020). Death by waste: Fashion and textile circular economy case. Science of the Total Environment, 718, 137317. https://doi.org/10.1016/j.scitotenv.2020.137317
  • Wang, Y. (2010). Fiber and textile waste Utilization. Waste and Biomass Valorization, 1(1), 135–143. https://doi.org/10.1007/s12649-009-9005-y
  • Ozkur, S., Sezgin, H., Akay, E., & Yalcin-Enis, I. (2020). Hybrid bio-based composites from blends of epoxy and soybean oil resins reinforced with jute woven fabrics. Materials Research Express, 7(1), 15335. https://doi.org/10.1088/2053-1591/ab6892
  • Gnaba, I., Omrani, F., Wang, P., Soulat, D., Ferreira, M., Vroman, P., & Jaouachi, B. (2019). Mechanical behavior of flax/polypropylene commingled nonwoven at dry scale: Influence of process parameters. Textile Research Journal, 89(5), 791–800. https://doi.org/10.1177/0040517518755789
  • Haque, M. S., & Sharif, A. (2017). Processing and Characterization of Waste Denim Fiber Reinforced Polymer Composites. International Journal of Innovative Science and Modern Engineering, 2(4), 24–28.
  • Uncu Akı, S., Candan, C., Uygun Nergis, B., & Önder, N. (2020). Understanding Denim Recycling : A Quantitative Study with Methodology. In Waste in Textile and Leather Sectors. https://doi.org/10.5772/intechopen.92793
  • Baccouch, W., Ghith, A., Yalcin-Enis, I., Sezgin, H., Miled, W., Legrand, X., & Faten, F. (2020b). Investigation of the mechanical, thermal, and acoustical behaviors of cotton, polyester, and cotton/polyester nonwoven wastes reinforced epoxy composites. Journal of Industrial Textiles. https://doi.org/10.1177/1528083720901864
  • Islam, M., Sharif, A., Hussain, M., & Hassan, I. (2019). Synergic effect of recycled cotton fabric and wood saw dust reinforced biodegradable polypropylene composites. Bangladesh Journal of Scientific and Industrial Research, 54(1), 21–30. https://doi.org/10.3329/bjsir.v54i1.40727
  • Wei, B., Xu, F., Azhar, S. W., Li, W., Lou, L., Liu, W., & Qiu, Y. (2015). Fabrication and property of discarded denim fabric/polypropylene composites. Journal of Industrial Textiles, 44(5), 798–812. https://doi.org/10.1177/1528083714550055
  • Narewska, J., Lassila, L., & Fardim, P. (2014). Preparation and characterization of new mouldable cellulose-AESO biocomposites. Cellulose, 21(3), 1769–1780. https://doi.org/10.1007/s10570-013-0157-3
  • Åkesson, D., Skrifvars, M., & Walkenström, P. (2009). Preparation of Thermoset Composites from Natural Fibres and Acrylate Modified Soybean Oil Resins. Journal of Applied Polymer Science, 114, 2502–2508. https://doi.org/10.1002/app.30773
  • Paulo Peças, Hugo Carvalho, Hafiz Salman, Marco Leite (2018), Natural Fibre Composites and Their Applications: A Review, Journal of Composites Science, 2, 66; doi:10.3390/jcs2040066
  • Grishchuk S. and Karger-Kocsis J. (2011). Hybrid thermosets from vinyl ester resin and acrylated epoxidized soybean oil (AESO). Express Polymer Letters. (5), 2-11.
  • Wu Y. and Li K. (2017). Replacement of styrene with acrylated epoxidized soybean oil in an unsaturated polyester resin from propylene glycol and maleic anhydride. Journal of Applied Polymer Science. 134, 450456 https://doi.org/10.1002/app.45056
  • Liu W., Fei M. and Qiu R. (2017). Biocomposites from hemp fibers and acrylated epoxidized soybean oil-based resins. 21st International Conference on Composite Materials
  • Temmink, R., Baghaei, B., & Skrifvars, M. (2018). Development of biocomposites from denim waste and thermoset bio-resins for structural applications. Composites Part A: Applied Science and Manufacturing, 106, 59–69. https://doi.org/10.1016/j.compositesa.2017.12.011
  • Bakar M. B. A., Masri M. N., Amini M. H. M., Thirmizir M. Z. M. and Salim M. S. (2018). Mechanical, thermal and morphological properties of epoxy resin toughened with epoxidized soybean oil. AIP Conference Proceedings 2030, 020277 https://doi.org/10.1063/1.5066918
  • Kocaman S. and Ahmetli G. (2016). Eco-Friendly Natural Filler Based Epoxy Composites. World Academy of Science, Engineering and Technology International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering. 10, 471
  • Sezgin, H., Mishra, R., Militky, J., & Berk Berkalp, O. (2020). Mechanical, thermo-mechanical and thermal characteristics of multi-walled carbon nanotubes-added textile-reinforced composites. Journal of Industrial Textiles, 50(5), 692–715. https://doi.org/10.1177/1528083719840631
  • Baccouch, W., Ghith, A., Yalcin-Enis, I., Sezgin, H., Miled, W., Legrand, X., & Faten, F. (2020a). Enhancement of fiber-matrix interface of recycled cotton fibers reinforced epoxy composite for improved mechanical properties. Materials Research Express, 7(1), 15340. https://doi.org/10.1088/2053-1591/ab6c04
  • Liang, Y., Wang, H., & Gu, X. (2013). In-plane shear response of unidirectional fiber reinforced and fabric reinforced carbon/epoxy composites. Polymer Testing, 32(3), 594–601. https://doi.org/10.1016/j.polymertesting.2013.01.015
  • Arpitha, G. R., Sanjay, M. R., Senthamaraikannan, P., Barile, C., & Yogesha, B. (2017). Hybridization effect of sisal/glass/epoxy/filler based woven fabric reinforced composites. Experimental Techniques, 41(6), 577–584. https://doi.org/10.1007/s40799-017-0203-4
  • Awais, H., Nawab, Y., Anjang, A., Md Akil, H., & Zainol Abidin, M. S. (2020). Effect of fabric architecture on the shear and impact properties of natural fibre reinforced composites. Composites Part B: Engineering, 195(December 2019), 108069. https://doi.org/10.1016/j.compositesb.2020.108069
  • Ramesh, M., Palanikumar, K., & Reddy, K. H. (2013). Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites. Composites Part B: Engineering, 48, 1–9. https://doi.org/10.1016/j.compositesb.2012.12.004
  • Selver, E., Dalfi, H., & Yousaf, Z. (2020). Investigation of the impact and post-impact behaviour of glass and glass/natural fibre hybrid composites made with various stacking sequences: Experimental and theoretical analysis. Journal of Industrial Textiles. https://doi.org/10.1177/1528083719900670
  • Shyr, T. W. & Pan Y. H. (2003). Impact resistance and damage characteristic of composite laminates. Composite Structures. 62(2), 193-203. https://doi.org/10.1016/S0263-8223(03)00114-4
  • Lampeas, G. (2020). Revolutionizing Aircraft Materials and Processes. Revolutionizing Aircraft Materials and Processes. https://doi.org/10.1007/978-3-030-35346-9
  • Skrifvars, M., Dhakal, H., Zhang, Z., Gentilcore, J., & Åkesson, D. (2019). Study on the mechanical properties of unsaturated polyester sandwich biocomposites composed of uniaxial warp-knitted and non-woven viscose fabrics. Composites Part A: Applied Science and Manufacturing, 121(March), 196–206. https://doi.org/10.1016/j.compositesa.2019.03.025
  • Sahoo, S. K., Mohanty, S., & Nayak, S. K. (2017). Mechanical, Thermal, and Interfacial Characterization of Randomly Oriented Short Sisal Fibers Reinforced Epoxy Composite Modified with Epoxidized Soybean Oil. Journal of Natural Fibers, 14(3), 357–367. https://doi.org/10.1080/15440478.2016.1212757
  • Jabbar, A., Militký, J., Wiener, J., & Karahan, M. (2016). Static and dynamic mechanical properties of novel treated jute/green epoxy composites. Textile Research Journal, 86(9), 960–974. https://doi.org/10.1177/0040517515596936
  • Liu, W., Chen, T., Fei, M. en, Qiu, R., Yu, D., Fu, T., & Qiu, J. (2019). Properties of natural fiber-reinforced biobased thermoset biocomposites: Effects of fiber type and resin composition. Composites Part B: Engineering, 171(April), 87–95. https://doi.org/10.1016/j.compositesb.2019.04.048
  • Shao, B., Fang, Y., Chen, B., Shen, J., Xu, S., Ou, R., & Wang, Q. (2020). Statistical distribution of mechanical properties and energy absorption of laminated cotton fabric reinforced epoxy composites. Polymer Composites, 41(7), 2829–2840. https://doi.org/10.1002/pc.25579
  • Fu, L. Yang, C. Dai, C. Zhao, L. Ma. (2010). Thermal and mechanical properties of ecrylated epoxidized-soybean oil-based thermosets. Journal of Applied Polymer Science, 117(4), 2220-2225.
  • Niedermann P., Szebenyi G. & Toldy A. (2014). Effect of Epoxidized Soybean Oil on Curing, Rheological, Mechanical and Thermal Properties of Aromatic and Aliphatic Epoxy Resins. Journal of Polymers and the Environment. 22 (June), 525-536