Ultra Yüksek Performanslı Lifli Beton ile Üretilmiş Betonarme Kirişlerin Eğilme Davranışı

Çalışmada, Ultra Yüksek Performanslı Lifli Beton (UYPLB) kullanımının betonarme kirişlerin sünekliği, taşıma kapasitesi, eğilme rijitliği, kırılma şekli ve çatlak davranışı üzerindeki etkileri deneysel olarak incelenmiştir. Bunun için dikdörtgen enkesitli 150x250x2500mm boyutlarında test kirişleri kullanılmıştır. Beton içeriğinde düz mikro ve kancalı makro boyutta çelik lifler karma olarak kullanılmış ve ortalama 163 MPa’lık basınç dayanımı elde edilmiştir. Dört farklı çekme donatısı oranına sahip lifli ve lifsiz toplam dokuz adet betonarme test kirişi üzerinde dört noktalı eğilme testleri gerçekleştirilmiş ve salt eğilme davranışları incelenmiştir. Çalışmadan elde edilen sonuçlar, kirişlerde UYPLB kullanımının incelenen parametreler bakımından önemli avantajlar sağladığını göstermiştir.

Flexural Behavior of Beams with Ultra High Performance Fiber Reinforced Concrete

In this study, the effects of using Ultra High Performance Fiber Reinforced Concrete (UHPFRC) on ductility, load bearing capacity, flexural stiffness, failure mode and cracking behavior of reinforced concrete (RC) beams were experimentally investigated. 150x250x2500 mm test beams with rectangular cross sections were used. Straight micro and hooked macro steel fibers were used together in the concrete and average compressive strength of 163 MPa was achieved. A total of nine RC test beams, with and without fibers, consisting of four different tensile reinforcement ratios were tested under four point bending and their flexural behaviors were investigated. The results of the study showed that the use of UHPFRC in the beams provided significant advantages in terms of investigated parameters.

___

  • Wille, K., Naaman, A. E., Parra-Montesinos, G. J., Ultra-high performance concrete with compressive strength exceeding 150 Mpa (22 ksi): a simpler way, ACI Materials Journal, 108, 1, 46-54, 2011.
  • Wille, K., Naaman, A. E., El-Tawil, S., Parra-Montesinos, G. J., Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing, Materials and Structures, 45, 309-324, 2012.
  • Wang, C., Yang, C., Liu, F., Wan, C., Pu, X., Preparation of ultra-high performance concrete with common technology and materials, Cement and Concrete Composites, 34, 538-544, 2012.
  • [4] Yazıcı, H., Yardımcı, M. Y., Aydın, S., Karabulut, A. S., Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes, Construction and Building Materials, 23, 1223-31, 2009.
  • [5] Yudenfreund, M., Skalny, J., Mikhail, R.S., Brunauer, S., Hardened portland cement pastes of low porosity, II. Exploratory studies, Dimensional changes, Cement and Concrete Research, 2, 3, 331-348, 1972.
  • [6] Roy, D. M., Gouda, G. R., Bobrowsky, A., Very high strength cement pastes prepared by hot pressing and other high pressure techniques, Cement and Concrete Research, 2, 349-366, 1972.
  • [7] Bache, H. H., Densified cement/ultrafine particle-based materials. 2nd int. Conference on superplasticizers in concrete, Ottawa, 1981.
  • [8] Richard, P., Cheyrezy, M., Composition of reactive powder concretes. Cement and Concrete Research, 25, 7, 1501-1511, 1995.
  • [9] AFGC, Recommendation: Ultra high performance fibre-reinforced concretes, revised ed., Association Française de Génie Civil; Service d’études techniques des routes et autoroutes, 2013.
  • [10] Fehling, E., Schmidt, M., Walraven, J., Leutbecher, T., Frönlich, S., Ultra-High Performance Concrete UHPC, Betonkalender, Wilhelm Ernst & Sohn, 2014.
  • [11] JSCE, Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks, Concrete Engineering Series, 82, Japan Society of Civil Engineers, 2008.
  • [12] Russell, H. G., Graybeal, B. A., Ultra-high performance concrete: a state-of-the-art report project bridge community, FHWA Publication HRT-13-060, Federal Highway Administration, 2013.
  • [13] Gowripalan, N., Gilbert, I., Design guidelines for ductal prestressed concrete beams, VSL Australia, 2000.
  • [14] Naaman, A. E., High performance fiber reinforced cement composites classification and applications, CBM–C1 International workshop, Karachi, Pakistan, 389-400, 2007.
  • [15] Taşdemir, M. A., Bayromov, F., Yüksek performanslı çimento esaslı kompozitlerin mekanik davranışı, itüdergisi/d, mühendislik serisi, 1, 2, 125-144, 2002.
  • [16] SAMARIS, Report D22, Full scale application of UHPFRC project rehabilitation of bridges-from the lab to the field, European project 5th FWP/SAMARIS-Sustainable and Advanced Materials for Road Infrastructures-WP 14: HPFRCC, 2005.
  • [17] Moreillon, L., Menétrey, P., Rehabilitation and strengthening of existing rc structures with uhpfrc: various application, RILEM-fib-AFGC Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete, France, RILEM Publication S. A. R. L, 127- 136, 2013.
  • [18] Wang, Y. C., Lee, M. G., Ultra-high strength steel fiber reinforced concrete for strengthening of RC frames, Journal of Marine Science and Technology, 15, 3, 210- 218, 2007.
  • [19] Tayeh, B. A., Bakar, B. H. A., Johari, M. A. M., Voo, Y. L., Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation-A review, Procedia Engineering, 54, 525-538, 2013.
  • [20] İlki, A., Demir, C., Bedirhanoglu, I., Kumbasar, N. "Seismic retrofit of brittle and low strength RC columns using fiber reinforced polymer and cementitious composites", Journal of Advances in Structural Engineering, Vol. 12, No. 3, pp. 325-347, 2009.
  • [21] Yavaş, A., Türker, K., Terzi, M., Hasgül, U., Birol, T., Gören, A., Ultra yüksek dayanımlı lifli beton ile güçlendirilmiş betonarme kolonların tersinir yükler altındaki davranışının incelenmesi, Sekizinci Ulusal Deprem Mühendisliği Konferansı, İstanbul, Türkiye, 2015.
  • [22] Tanarslan H.M., Alver N., Jahangiri, R., Yalçınkaya, Ç., Yazıcı, H. Flexural strengthening of RC beams using UHPFRC laminates: Bonding techniques and rebar addition, Construction and Building Materials, 155, 45–55, 2017.
  • [23] Guan, Q., Zhang, P., Xie, X., Flexural behavior of steel fiber reinforced high-strength concrete beams, Research Journal of Applied Sciences, Engineering and Technology, 6, 1, 1-6, 2013.
  • [24] Yang, I., Joh, C., Kim, B., Structural behavior of ultra high performance concrete beams subjected to bending, Engineering Structures, 32, 3478-3487, 2010.
  • [25] Khalil, W. I., Tayfur, Y. R., Flexural strength of fibrous ultra high performance reinforced concrete beams, ARPN Journal of Engineering and Applied Sciences, 8, 3, 200-214, 2013.
  • [26] Stürwald, S., Fehling, E., Design of reinforced UHPFRC in flexure, 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel University Press, Germany, 403-410, 2012.
  • [27] Dancygier, A. N., Savir, Z., Flexural behavior of HSFRC with low reinforcement ratios, Engineering Structures, 28, 1503-1512, 2006.
  • [28] Türker, K., Birol, T., Yavaş, A., Hasgül, U., Ultra yüksek performanslı lifli beton içeren kirişlerde etkin çelik lif tipi incelemesi, Afyon Kocatepe Ü. Fen ve Mühendislik Bilimleri Dergisi, 16, 776-785, 2016.
  • [29] Ashour, S. A., Wafa, F. F., Flexural behavior of high-strength fiber reinforced concrete beams, ACI Structural Journal, 90, 3, 279-287, 1993.
  • [30] Yoo, D. Y., Yoon, Y. S., Structural performance of ultra-high-performance concrete beams with different steel fibers, Engineering Structures, 102, 409-423, 2015.
  • [31] Bertram, G., Hegger, J., Shear carrying capacity of ultra-high performance concrete beams, 8th International Symposium on Utilization of High-Strength and High- Performance Concrete, Tokyo, Japan, 2008.
  • [32] Voo, Y. L., Poon, W. K., Foster, S. J., Shear strength of steel fiber-reinforced ultra-high performance concrete beams without stirrups, Journal of Structural Engineering, 136, 11, 1393-1400, 2010.
  • [33] Sudheer Reedy, L., Ramana Rua, N. V., Gunneswara Rao, T. D., Shear resistance of high strength concrete beams without shear reinforcement, International Journal of Civil and Structural Engineering, 1, 1, 101-113, 2010.
  • [34] ACI 318-14, Building code requirements for structural concrete and commentary, ACI Standard, American Concrete Institute, 2014.
  • [35] Sivakamur, A., Santhanam, M. Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres, Cement and Concrete Composites, 29, 603-608, 2007.
  • [36] Yoo, D. Y., Lee, J. H., Yoon, Y. S. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites, Composite Structures, 106, 742-753, 2013.
  • [37] Marković, I., High-performance hybrid-fibre concrete-development and utilization, Ph.D. Dissertation, Delft University of Technology, 2006.
  • [38] Kim, D. J., Park, S. H., Ryu, G. S., Koh, K. T., Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers, Construction and Building Materials, 25, 4144-4155, 2011.
  • [39] Rossi, P., Arca, A., Parant, E., Fakhri, P., Bending and compressive behaviors of a new cement composite, Cement and Concrete Research, 35, 1, 27-33, 2005.
  • [40] Birol, T. Ultra yüksek performanslı lifli beton ile üretilen betonarme kirişlerin eğilme davranışının incelenmesi, Doktora Tezi, Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir, 2016.
  • [41] Türk Standartları Enstitüsü, TS500: Betonarme yapıların tasarım ve yapım kuralları, Bakanlıklar, Ankara, 2000.
  • [42] Park, R., Evaluation of ductility of structures and structural assemblages from laboratory testing, Bulletin of the New Zealand National Society for the Earthquake Engineering, 22, 3, 155-166, 1989.
  • [43] Yoo, D., Yoon, Y., Structural performance of ultra-high-performance concrete beams with different steel fibers, Engineering Structures, 102, 409–423, 2015.
  • [44] Dancygier, A.N., Berkover, E., Cracking localization and reduced ductility in fiber- reinforced concretebeams with low reinforcement ratios Engineering Structures 111, 411–424, 2016.
  • [45] Park, R., Ruitong, D., Ductility of doubly reinforced concrete beam sections, ACI Structural Journal, 85, 2, 217-225, 1988.
  • [46] Rashid, M. A., Mansur, M. A., Reinforced high-strenght beams in flexure, ACI Structural Journal, 84, 4, 330-341, 2005.