Türkiye’nin En Uzun Sulama Tüneli Suruç Tünelinde Geoteknik ve Tahkimat Tasarımları

Bu çalışma Suruç ovasının sulanması amacıyla inşa edilen Suruç tüneli güzergahındaki geoteknik çalışmaları ve tünel destek tasarımını kapsamaktadır. Suruç tüneli (7.9 m kazı çapı), Türkiye’nin birinci, dünyanın ise beşinci en uzun sulama tüneli olacaktır (17.2 km). Tünel kireçtaşı ve marn birimlerinden geçmektedir. Saha çalışmaları sondaj, numune alımı, geçirgenlik deneyleri, laboratuvar testleri, kaya kütlesinin karakterize edilmesi (RMR, Q ve GSI sistemleriyle), süreksizlik ölçümleri ve kinematik analizleri kapsamaktadır. Tünel basınçları, yenilme zonu sınırları ve destek tasarımları deneysel, analitik ve sayısal yöntemlerle belirlenmiş, doğrulukları convergence-confinement yöntemiyle ve Plaxis 8.2 yazılımı ile sınanmıştır. En küçük deformasyonlar önceden dökülmüş hazır beton destek elemanlarıyla elde edilmiştir. 

___

  • [1] Bar-Su and Geotecna Progetti Srl. Engineering Companies, Suruç tunnel report, 2010. [2] Diederichs, M.S., Hoek, E., DIPS 2.2. Advanced Version Computer Programme, Rock Engineering Group, Department of Civil Engineering, University of Toronto, 1989. [3] Plaxis B.V., User manual for Plaxis 8.2. Computerlaan 14, 2628 XK Delft, The Netherlands, 2000. [4] Ichikawa, K., Geological investigation of dams. Proc. of 2nd Asian Symposium on Engineering Geology and the Environment. Malaysian National Group, Bangi, Malaysia, s 1-57, 1999. [5] ASTM D2487-11, Standard Practice for Classification of Soils for Engineering Purposes, Unified Soil Classification System (USCS). ASTM International, USA, 1984. [6] AFAD (Afet ve Acil Durum Yönetimi), Deprem Dairesi Başkanlığı: http://www.deprem.gov.tr, (1996). [7] ISRM (International Society for Rock Mechanics): The complete ISRM suggested methods rock characterization, testing and monitoring:1974-2006, Editors: R. Ulusay, J.A. Hudson, ISBN: 978-975-93675-4-1, Kozan Ofset, Ankara, Turkey, p 613 (2007). [8] Ulusay, R., Sonmez, H.: Kaya kütlelerinin mühendislik özellikleri (in Turkish), TMMOB Jeoloji Mühendisleri Odası Yayınları, No: 60, Ankara (2002). [9] Deere, D.U.: Geological consideration. In: Stagg, K.G., Zienkiewicz, O.C. (Eds.), Rock Mechanics in Engineering Practice. Wiley, London (1968). [10] Bieniawski, Z.T.: Engineering classification of jointed rock masses. Trans. S. Afr. Inst. Civ. Eng. 15, 335-344 (1973). [11] Barton, N.R., Lien, R., Lunde, J.: Engineering classification of rock masses for the design of tunnel support. Rock Mech. 4, 189– 239 (1974). [12] Palmstrom, A.: RMi - a rock mass characterization system for rock engineering purposes. PhD Thesis, Oslo University, Norway. p 400 (1995). [13] Hoek, E., Brown, E.T.: Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 27 (3), 227– 229 (1997). [14] Bieniawski, Z.T.: Engineering Rock Mass Classifications. Wiley, New York. pp 251 (1989). [15] Grimstad, E., Barton, N.: Updating the Q-system for NMT. Proc. Int. Symp. on Sprayed Concrete, Fagernes, Norway, Norwegian Concrete Association, Oslo, p 20 (1993). [16] Hoek, E., Marinos, P., Benissi, M.: Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses: the case of the Athens schist formation. Bulletin of Engineering Geology and the Environment 57, 151-160 (1998). [17] Sonmez, H., Ulusay, R.: Modifications to the geological strength index (GSI) and their applicability to stability of slopes. International Journal of Rock Mechanics and Mining Sciences 36 (6), 219–233 (1999). [18] Sonmez, H., Ulusay, R.: A discussion on the Hoek –Brown failure criterion and suggested modifications to the criterion verified by slope stability case studies. Yerbilimleri 26, 77–99 (2002). [19] Goel, R.K., Jethwa, J.L., Paithankar, A.G.: Indian experiences with Q and RMR systems. Tunn. Undergr. Space Technol. 10 (1), 97– 109 (1995). [20] Hoek, E., Kaiser, P.K., Bawden, W.F.: Support of underground excavations in hard rock. Balkema, Roterdam, Brookfield, p 213 (1995). [21] Barton, N.: Some new Q-value correlations to assist in site characterization and tunnel design. Int. J. Rock Mech. Min. Sci. 39 (1), 185– 216 (2002). [22] Singh, B., Viladkar, M.N., Samadhiya, N.K., Mehrota, V.K.: Rock mass strength parameters mobilized in tunnels. Tunn. Undergr. Space Technol. 12 (1), 47–54 (1997). [23] Palmstrom, A.: Recent developments in rock support estimates by the RMi. J. Rock Mech. Tunn. Technol. 6 (1), 1–19 (2000). [24] Palmstrom, A.: Characterizing rock masses by the RMI for use in practical rock engineering: Part 1: The development of the Rock Mass Index (RMI). Tunn. Undergr. Space Technol. 11 (2), 175-188 (1996). [25] Ramamurthy, T.: Stability of rock mass. Indian Geotechnical Journal, 1–74 (1986). [26] Goel, R.K.: Correlations for predicting support pressures and closures in tunnels. PhD Thesis, Nagpur University, Nagpur, India, p 308 (1994). [27] Kalamaris, G.S., Bieniawski, Z.T.: A rock mass strength concept for coal incorporating the effect of time. Proceedings of the Eighth International Congress on Rock Mechanics, vol. 1. Balkema, Rotterdam, 295–302 (1995). [28] Bhasin, R., Grimstad, E.: The use of stress–strength relationships in the assessment of tunnel stability. Tunn. Undergr. Space Technol. 11 (1), 93–98 (1996). [29] Aydan, O., Ulusay, R. and Kawamoto, T.: Assessment of rock mass strength for underground excavations. International Journal of Rock Mechanics and Mining Science 34 (3/4), 777-786 (1997). [30] Sheorey, P.R.: Empirical Rock Failure Criteria. Balkema, Rotterdam (1997). [31] Trueman, R.: An evaluation of strata support techniques in dual life gateroads. PhD Thesis, University of Wales, Cardiff. In Read, S.A.L., Richards, L.R., and Perrin, N.D., 1999. Applicability of the Hoek–Brown failure criterion to New Zealand greywacke rocks. Proceeding 9th International Society for Rock Mechanics Congress, Paris, 2, 655–660 (1998). [32] Aydan, O., Dalgic, S.: Prediction of deformation behavior of 3 lanes Bolu tunnels through squeezing rocks of North Anatolian Fault Zone (NAFZ). Proceedings of the Regional Symposium on Sedimentary Rock Engineering, Taipei, 228–233 (1998). [33] Barton, N.: TBM Tunnelling in Jointed and Faulted Rock. Rotterdam, Balkema, pp 169 (2000). [34] Bieniawski, Z.T.: Determining rock mass deformability: experience from case histories. Int. J. Rock Mech. Min. Sci. Geomech Abstr. 15, 237–247 (1978). [35] Serafim, J.L., Pereira, J.P.: Considerations of the geomechanics classification of Bieniawski. Proceedings International Symposium Engineering Geology and Underground Construction, vol. 1. Balkema, Rotterdam, 1133– 1142 (1983). [36] Nicholson, G.A., Bieniawski, Z.T.: A non-linear deformation modulus based on rock mass classification. Int. J. Mining and Geological Engineering 8, 181-202 (1990). [37] Verman, M.K.: Rock mass-tunnel support interaction analysis, PhD Thesis, University of Roorkee, Roorkee, India (1993). [38] Mitri, H.S., Edrissi, R., Henning, J.: Finite element modeling of cable-bolted slopes in hard rock underground mines. SME Annual Meeting 14–17 February, New Mexico. SME, Albuquerque, 94–116 (1994). [39] Hoek, E., Brown, E.T.: Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 34 (8), 1165– 1186 (1998). [40] Read, S.A.L., Richards, L.R., Perrin, N.D.: Applicability of the Hoek–Brown failure criterion to New Zealand greywacke rocks. Proceeding 9th International Society for Rock Mechanics Congress, Paris, vol. 2, 655– 660 (1999). [41] Hoek, E., Diederichs, M.S.: Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences 43 (2), 203–215 (2006). [42] Unal, E.: Design Guidelines and Roof Control Standards for Coal Mine Roofs. Ph.D. Thesis, Pennsylvania State University (Reference Bieniawski, Z.T., 1984, Rock Mechanics in Mining and Tunnelling, p. 113, Rotterdam: A. A. Balkema (1983). [43] Fenner, R.: Untersuchungen zur Erkenntnis des Gebirgsdruckes. Gluckauf, 74, 681–695 and 705–715 (1938). [44] Carranza-Torres, C., Fairhurst, C.: The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion. Int. J. Rock Mech. Min. Sci. 36, 777-809 (1999). [45] Carranza-Torres, C., Fairhurst, C.: Application of the convergence–confinement method of tunnel design to rock masses that satisfy the Hoek–Brown failure criterion. Tunn. Undergr. Space Technol. 15 (2), 187– 213 (2000). [46] Basarir, H., Ozsan, A., Karakus, M.: Analysis of support requirements for a shallow diversion tunnel at Guledar dam site, Turkey. Eng. Geol. 81, 131–145 (2005). [47] Basarir, H.: Engineering geological studies and tunnel support design at Sulakyurt dam site, Turkey. Eng. Geol. 86, 225–237 (2006). [48] Hoek, E., Marinos, P.: Predicting tunnel squeezing. Tunnels and Tunnelling International. Part 1 -November 2000, Part 2 December 2000 (2000). [49] Çubuk, M.K., Öztürk, E.A., Hatipoğlu, S., Sinoplu, M.Z.: Türkiye’deki Karayolu Tünellerinde Trafik Güvenliği. İMO Teknik Dergi 3, 4471-4486 (2008).