Tuz Stresi Koşullarında Bazı Tritikale Çeşitlerinin Hidrojen Peroksit (H2O2) Ön Uygulamasına Tepkileri

Bu çalışmada, tritikale tohumlarına hidrojen peroksit (H2O2) ön uygulaması (0, 50 ve 100 µM) yaparak çeşitli tuz dozlarında (0, 50 ve 100 mM NaCl) fide gelişim dönemindeki morfolojik ve fizyolojik değişimler saptanmıştır. Bu amaçla, ülkemizde yaygın olarak yetiştirilen 4 tritikale çeşidi (Karma-2000, Presto-2000, Tatlıcak-97 ve Mikham-2002) materyal olarak kullanılmış; iki yapraklı döneme gelen fidelerde tuz stresi uygulamasını izleyen 0. ve 14. günlerdeki bitki büyüme değerleri, klorofil içeriği (SPAD), stoma sayısı (adet), stoma eni (µ) ve boyu (µ) ile yaprak su kayıp oranı (%) incelenmiştir. Yapılan gözlem ve ölçümler sonucunda, tuz stresindeki artışın tüm morfolojik parametreleri baskıladığı belirlenerek; 50 µM’lık H2O2 ön uygulamasının, erken fide gelişimi dönemindeki tuz stresinin baskılayıcı yöndeki etkisini azaltabileceği sonucuna varılmıştır. İncelenen morfolojik parametreler yönünden Tatlıcak-97 ve Presto-2000 çeşitleri öne çıkmış; denemeye alınan çeşitlerde stoma sayısı dışında kalan fizyolojik özellikler bakımından farklı tepkiler alınmıştır. Sonuç olarak, toprak tuzluluğuna orta düzeyde toleranslı olan tritikale tohumlarına yapılan H2O2 ön uygulamasının, incelenen morfolojik ve fizyolojik parametrelerde iyileşmeye ve tuzlu ortam koşullarına olan toleransın artışına katkı yaptığı söylenebilir.

Responses of Some Triticale Varieties to Hydrogen Peroxide (H2O2) Priming Under Salt Stress Conditions

In this study, morphological and physiological changes at seedling growth stage under different salt stress (0, 50 and 100 mM NaCl) were determined by hydrogen peroxide (H2O2) pre-treatment (0, 50 and 100 μM) to triticale seeds. For this purpose, 4 triticale varieties (Karma-2000, Presto-2000, Tatlıcak-97 and Mikham-2002) which are widely grown in our country were used as plant material. In this study, plant growth parameters, chlorophyll content (SPAD), number of stomata, stomata width (µ) and length (µ) and leaf water loss rate (%) of triticale seedlings reach to two leaves were investigated 0th and 14th days after salt stress application. As a results of observations and measurements, it was determined that all morphological parameters were reduced significantly by increase in salt stress and 50 μM H2O2 pre-treatment to triticale seeds may reduce the suppressive effect of salt stress at early seedling growth stage. In terms of the morphological parameters examined, Tatlıcak-97 and Presto-2000 varieties had the best response to H2O2 pre-treatment and the varieties responded differently for all the physiological characteristics examined except for the number of stomata. In conclusion, it can be said that pre-treatment of triticale seeds with H2O2 contributed to improvement in morphological and physiological parameters and thus increase the tolerance of triticale plants to saline environment conditions.

___

  • Agarwal, M. and J.K. Zhu, 2005. Integration of abiotic stress signaling pathways. In: Plant Abiotic Stress. (Eds: M.A. Jenks and P.M. Hasegawa). Blackwell Publishing, Oxford, UK. pp: 215-247.
  • Anonim, 2006. Türkiye topraklarının çoraklık durumu. www.khgm.gov.tr/kutuphane/ trcoraklik/2.htm.
  • Anonim, 2016. FAO Statistical Databases. www.fao.org/faostat/en/#data/QC (erişim tarihi: 10.02.2016).
  • Ashfaque, F., M. Iqbal, R. Khan and N.A. Khan, 2014. Exogenously applied H2O2 promotes proline accumulation, water relations, photosynthetic efficiency and growth of wheat (Triticum aestivum L.) under salt stress. Annual Research and Review in Biology. 4(1): 105-120.
  • Atak, M. ve C.Y. Çiftçi, 2005. Tritikale (xTriticosecale Wittmack)’de farklı ekim sıklıklarının verim ve bazı verim öğelerine etkileri. Tarım Bilimleri Dergisi. 11(1): 98-103.
  • Briggle, L.W., 1969. Triticale: A review. Crop Science. 9: 197-200.
  • Clarke, J.M. and T.N. McCaig, 1982. Excised-leaf water retention capability as an indicator of drought resistance of Triticum Genotypes. Can. J. Plant Sci., 62: 571-578.
  • Dat, J., S. Vandenabeele, E. Vranová, M.V. Montagu, D. Inzé and F.V. Breusegem, 2000. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences. 57: 779-795.
  • Dhanda, S.S, G.S. Sethi and R.K. Behl, 2004. Indices of drought tolerance in wheat genotypes at early stages of plant growth. Journal of Agronmy and Crop Science. 190: 6-12.
  • Düzgüneş, O., T. Kesici, O. Kavuncu ve F. Gürbüz, 1987. Araştırma ve deneme metodları (Ders kitabı). 1021/295, Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ankara. 381 s.
  • Gondim, F.A., E. Gomes-Filho, C.F. Lacerda, J.T. Prisco, A.D.A. Neto and E.C. Marques 2010. Pretreatment with H2O2 in maize seeds: Effects on germination and seedling acclimation to salt stress. Brazilian Society of Plant Physiology. 22 (2): 103-112.
  • He, L., Z. Gao and R. Li, 2009. Pretreatment of seed with H2O2 enhances drought tolerance of wheat (Triticum aestivum L.) seedlings. African Journal of Biotechnolgy. 8: 6151-6157.
  • Ibrahim, E.A., 2015. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology. 192: 38-46.
  • Kara, B., İ. Akgün and D. Altındal, 2011. Tritikale Genotiplerinde çimlenme ve fide gelişimi üzerine tuzluluğun (NaCl) etkisi. Selçuk Tarım ve Gıda Bilimleri Dergisi. 25(1): 1-9.
  • Li, T.J., B.Z. Qiu, X.W. Zhang and L.S. Wang, 2011. Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiolgia Plantarum. 33: 835-842.
  • Miller, G., N. Suzuki, S. Çiftci-Yılmaz and R. Mittler, 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environmental. 33: 453-67.
  • Mullineaux, P.M. and N.R. Baker, 2010. Oxidative stress: Antagonistic signaling for acclimation or cell death. Plant Physiology. 154: 521-525.
  • Munns, R. and M. Tester, 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59: 651–81.
  • Santhy, V., M. Meshram, R. Wakde and P.R. Vijaya Kumari, 2014. Hydrogen peroxide pre-treatment for seed enhancement in cotton (Gossypium hirsutum L.). African Journal of Agricultural Research. 9(25): 1982- 1989.
  • Savvides, A., S. Ali, M. Tester and V. Fotopoulos, 2016. Chemical priming of plants aganist multiple abiotic stresses: mission possible. Trends in Plants Science. 21(4): 329-340.
  • Steel, R.G.D. and J.H. Torrie, 1960. Principles and procedures of statistics (With special refence to the biological sciences). Mc Graw-Hill Book Co., New York, Toronto, London, 481 p.
  • Ślesak, I., M. Libik, B. Karpinska, S. Karpinski and Z. Miszalski, 2007. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochimica Polonica, 54(1): 39–50.
  • Uchida, A., A.A.T. Jagendorf, T. Hibino, T. Takabe and T. Takabe, 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science. 163: 515-523.
  • Xu, Z. and G. Zhou, 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany. 59(12): 3317-3325.
  • Wahid, A., M. Perveen, S. Gelani and S.M.A Basra, 2007. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. Journal of Plant Physiology. 164: 283-294.
  • Yağmur, M., and D. Kaydan, 2008. Alleviation of osmotic stress of water and salt in germination and seedling growth of triticale with seed priming treatments. African Journal of Biotechnolgy. 7(13): 2156-216
Tekirdağ Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1302-7050
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2004
  • Yayıncı: Namık Kemal Üniv. Tekirdağ Ziraat Fak.