Türkiye'de İncir Üretiminin Geleceği

İncir sıcak ve nemli iklimlerde yetişen bir meyve olduğu için Akdeniz iklim kuşağındaki ülkelerde yaygın olarak yetiştirilmektedir. İncir içerdiği mineral ve vitaminler bakımından insan beslenmesinde önemli bir yere sahiptir. Taze incir doğrudan tüketime sunulurken kuru incir birçok tatlının yapımında ana veya yardımcı ürün olarak kullanılmaktadır. Akdeniz iklim kuşağında yer alan Türkiye’de önemli bir incir üreticisi ve ihracatçısıdır. Dünya incir üretiminin %23'ü Türkiye tarafından sağlanmaktadır. Türkiye’nin 81 ilinin 60’ında incir üretimi yapılmakla birlikte üretimin en yoğun yapıldığı iller Aydın, İzmir, Bursa, Mersin ve Hatay'dır. Bu beş il, Türkiye toplam incir üretiminin yaklaşık %86'sını sağlamaktadır. Bu çalışmanın amacı, 1991 2016 yılları verilerini kullanarak, 2017-2025 yıllarını kapsayan gelecek 9 yıl için Türkiye incir üretiminin seyrini tahmin ederek önemli bir ihraç ürünü olan incirle ilgili karar vericilere bilgi sağlamaktır. Çalışmada tahminler ARIMA modeli kullanılarak yapılmıştır. Elde edilen bulgulara göre, 2017-2025 yıllarını kapsayan gelecek 9 yıllık dönemde Türkiye incir üretiminin azalacağı buna karşın incir üretiminde önde gelen 5 ilin toplamdaki payı %1 artacaktır. Tahminlere göre yaş incir üretiminde önde olan illerde incir üretimi artmakta ve kuru incir üretiminde önde olan illerde ise incir üretimi azalmaktadır. Sonuç olarak, yeni ihracat imkânları için Türkiye'nin diğer ülkelerde sofralık incir talebi oluşturması gerekmektedir.

Future of Fig Production in Turkey

Fig is a fruit that grows in warm and humid climates; therefore, it is widely cultivated in the countries of Mediterranean climate zone. It has an important role in human nutrition with the minerals and vitamins it contains. While fresh figs are offered for direct consumption, dried figs are used as the main or auxiliary ingredient in many desserts. Located in the Mediterranean climate zone, Turkey is an important fig producer and exporter with a share of 23% in world fig production. Although fig production is realized in 60 out of 81 provinces in Turkey, it is mostly produced in Aydin, İzmir, Bursa, Mersin, and Hatay provinces, which provide some 86 percent of the total production. The aim of this study is to predict the fig production trend of Turkey for the next 9 years from 2017 to 2025 using the fig production data from the period between 1991 and 2016 in order to enlighten the policy and decision makers regarding fig, an important export product of Turkey. The ARIMA model has been used to make the estimations in the study. According to the findings, it has been forecasted that Turkey’s fig production will decrease in the next ten years from 2017 to 2025 and the total share of five leading provinces will increase by 1 percent in fig production. It has also been estimated that fig production will increase in leading fresh fig producer provinces, whereas it will decrease in leading dried fig producer provinces in Turkey. It has been concluded that there is a need to create fresh fig demand in other countries for new exporting possibilities.

___

  • Abdullah, L. 2012. ARIMA model for gold bullion coin selling prices forecasting. IJAAS 1(4):153-158.
  • Anonymous. 2017a. The ARIMA Models. Retrieved in November, 29, 2015 from http://people.duke.edu/~rnau/411arim.htm.
  • Anonymous. 2017b. Dry Fig Annual Report, 2013. Customs and Trade Ministry. General Directorate of Cooperatives in February, 2014.
  • Anonymous. 2017c. Aegean Dried Fruits and Products Exporters' Union. Retrieved in November, 29, 2017 from http://www.egeliihracatcilar.com/StandartRaporlar/KuruMeyve2011.2012.htm.
  • Bal, E. 2012. Effect of postharvest UV-C treatments on quality attributes of fresh fig. Bulgarian J. Agric. Sci. 18(2):191-196.
  • Box, G. E. P. and G. M., Jenkins, 1970. Statistical Models for Forecasting and Control. Holden Day, San Francisco.
  • Bulbul, S., H. Atil and S Hepaksoy, 1997. A general study of commercial dried fig production in the Big Meander Valley of Turkey. In I International Symposium on Fig. 480:317-320.
  • Cobanoglu, F., H. Kocatas, M. Ozen, E. Tutmus and R. Konak 2007. An evaluation of approach in determination of climate factors impact on dried fig exportation in Turkey J. Fac. Agric. OMU, 22(1):11-19.
  • Eriten, A. 2005. Estimates of demand relationships for figs and figs products in Turkey. Middle East Technical University, Graduate School of Social Sciences, Master Thesis, Ankara.
  • DFAR. 2017. Dry Fig Annual Report (DFAR), 2015. Customs and Trade Ministry. General Directorate of Cooperatives in February, 2016. Retrieved in December 23, 2017, from http://koop.gtb.gov.tr/data/56e959311a79f5b210d9176d/2015%20Kuru%20%C4%B0ncir%20Raporu.pdf.
  • FAOSTAT. 2017. Classifications and standarts. Retrieved in November, 29, 2017 from http://faostat.fao.org/site/535/DesktopDefault.aspx?PageID=535#ancor
  • Finley, J. W. 2005. Proposed criteria for assessing the efficacy of cancer reduction by plant foods enriched in carotenoids, glucosinolates, polyphenols and seleno compounds. Annals of Botany. 95(7):1075-1096.
  • Flaishman, M. A., V. Rover and E. Stover, 2008. The fig: botany, horticulture and breeding. Hort. Rev. 34:113-197.
  • Hiwale, S. 2015. Fig (Ficus carica). In Sustainable Horticulture in Semiarid Dry Lands. Springer India p 159-175.
  • Isin, F., T. Cukur and G. Armagan, 2007. Factors affecting the adoption of the organic dried fig agriculture system in Turkey. J. Appl. Sci. 7(5):748-54.
  • ITC. 2017. Trade of fig. Retrieved in December, 05, 2017 from http://www.trademap.org/Bilateral_10D_TS.aspx.
  • Joseph, B. and S. J. Raj, 2011. Pharmacognostic and phytochemical properties of Ficus carica Linn–An overview. Int. J. Pharm.Tech. Res. 3(1):8-12.
  • Kocatas, H. 2014. Determination of the effects of chilling periods of some fig cultivars and hydrogen cyanamide (H2CN2). treatment on earliness. Adnan Menderes University Graduate School of Natural and Applied Sciences, Master Thesis, Aydin, Turkey.
  • Moharrampour, M, S. Sohrabi and J. Vakili, 2013. Comparison of Support Vector Machines (SVM). and Autoregressive integrated moving average (ARIMA). in daily flow forecasting. SCIJOUR 1(1):1-10.
  • Mombeini, H. and A. Yazdani-Chamzini, 2014. Developing a new approach for forecasting the trends of oil price. BMR 4(3):120-132.
  • Patil Vikas, V., S. C. Bhangale and V. R. Patil, 2010. Evaluation of anti-pyretic potential of ficus carica leaves. IJPSR 2(2):48-50.
  • Ramesh, D., B. Bhattacharyya and R. Biswas, 2014. Forecasting of maize production in Andhra Pradesh by ARIMA modeling. Environ. Ecol. 32 (4B):1709-1713.
  • Sezen, I., S. Ercisli and S. Gozlekci, 2014. Biodiversity of figs (Ficus carica l.). in Coruh valley of Turkey. ErwerbsObstbau. 56(4):139-146.
  • Silva, L. C., M. N. Harder, P. B. Arthur, R. B. Lima, D. M. Modlo and V. Arthur, 2009. Physical-chemical characteristics of figs (Ficus carica). preready to submitted to ionizing radiation. International Nuclear Atlantic Conference, ISBN: 978-85-99141-03-8.
  • Stover, E., M. Aradhya, L. Ferguson and C. H. Crisosto, 2007. The fig: overview of an ancient fruit. HortSci. 42(5):1083-1087.
  • Teoh, T. T., S. Cho Yand, Y. Y. Nguwi, 2012. Emotional prediction using time series multiple-regression genetic algorithm for autistic syndrome disorder. In Computer ICCSE, 2012 7th International Conference on p. 9-12.
  • Turhan, S., M. Nargelecekenler, and B. Cetin, 2013. A hedonic analysis of Bursa's Black Fig bid prices and product quality characteristics in Turkey. JFAE 11(1):264-267.
  • Turk, R. 1988. Effects of harvest time and precooling on fruit quality and cold storage of figs. In International Symposium on Postharvest Handling of Fruit and Vegetables. 258:279-286.
  • TURKSTAT. 2017. Turkish Statistical Institute. Retrieved in November, 29, 2017 from http://www.turkstat.gov.tr/UstMenu.do?metod=kategorist.
  • Vinson, J. A. 1999. The functional food properties of figs. Cereal Food World. 4:82-87.
  • Vinson, J. A., L. Zubik, P. Bose, N. Samman, and J. Proch, 2005. Dried fruits: excellent in vitro and in vivo antioxidants. JACN 4:44-50.
  • Wang, W. C., K. W. Chau, D. M. Xu and X. Y. Chen, 2015. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Res. Manage. 1-21. DOI 10.1007/s11269-015-0962-6.
  • Wasseja, M.M. and S. N. Mwenda, 2015. Analysis of the volatility of the electricity price in Kenya using autoregressive integrated moving average model. SJAMS, 3(2):47-57.
  • Yavuz, F., A. Bilgic, M. Terin and I. O. Guler, 2013. Policy implications of trends in Turkey's meat sector with respect to 2023 vision. Meat Science 95(4):798-804