ZrO2-8% Y2O3 Kaplamaların Mikroyapı Ve Mekanik Özellikleri Üzerine Isıl İşlemin Etkisi

Bu çalışmada, plazma sprey yöntemi ile AISI 316L üzerinde üretilmiş ZrO2-%8 Y2O3 kaplamaların mikroyapı ve mekanik özellikleri üzerine ısıl işlemin etkisi araştırılmıştır. Seramik kaplamalar, 900°C, 1000°C ve 1100°C sıcaklıklarda ısıl işlem prosesine tabi tutulmuştur. Kaplama tabakalarının faz bileşimi ve mikroyapısı X-ışını difraktogramı (XRD) ve taramalı elektron mikroskobu (SEM) ile incelenmiştir. Kaplamaların aşınma özellikleri ASTM G133 test standartları referans alınarak aşınma test cihazında ball on disk yöntemi ile test edilmiştir. SEM çalışmalarına göre, en fazla gözenek oluşumu ısıl işlemsiz numunede görülürken, ısıl işlem sıcaklığı arttıkça gözenek miktarının azaldığı tespit edilmiştir. Fakat ısıl işlemin arayüzey bağlanmasına olumsuz etki ettiği de kaçınılmaz bir sonuç olarak elde edilmiştir. Kaplama mikroyapısında t-ZrO2 ve c-ZrO2 fazlarının oluştuğu XRD analizlerinden belirlenmiştir. Sonuçlar, ısıl işlem sıcaklığının artmasıyla, kaplamaların sertliklerinde artış olduğunu ve sürtünme katsayılarında ve aşınma oranlarında ise azalma meydana geldiğini göstermiştir. 

___

  • [1] Xie, G., Zhang, J., Lu, Y., He, Z., Hu, B., Zhang, D., Wang, K., and Lin, P., (2007). Influence of Laser Treatment on the Corrosion Properties of Plasma-Sprayed Ni-coated WC Coatings. Applied Surface Science, 253(23):9198-9202. https://doi.org/10.1016/j.apsusc.2007.05.049.
  • [2] Rhys-Jones, T.N., (1990). Thermally Sprayed Coating Systems for Surface Protection And Clearance Control Applications in Aero Engines. Surface and Coatings Technology, 43:402-415. https://doi.org/10.1016/0257-8972(90)90092-Q.
  • [3] Mateos, J.J.M.E., Cuetos, J.M., Fernandez, E., and Vijande, R., (2000). Tribological behaviour of Plasma-sprayed WC Coatings with and without Laser Remelting. Wear, 239(2):274-281. https://doi.org/10.1016/S0043-1648(00)00325-2.
  • [4] Afzal, M., Ajmal, M., Khan, A.N., Hussain, A., and Akhter, R., (2014). Surface Modification of Air Plasma Spraying WC–12% Co Cermet Coating by Laser Melting Technique. Optics & Laser Technology, 56, 202-206. https://doi.org/10.1016/j.optlastec.2013.08.017.
  • [5] Ghadami, F., Sohi, M.H., and Ghadami, S., (2015). Effect of TIG surface Melting on Structure and Wear Properties of Air Plasma-Sprayed WC–Co coatings. Surface and Coatings Technology, 261:108-113. https://doi.org/10.1016/j.surfcoat.2014.11.050.
  • [6] Li, B., Gao, Y., Jia, J., Han, M., Guo, H., and Wang, W., (2016). Influence of Heat Treatments on the Microstructure as well as Mechanical and Tribological Properties of NiCrAlY-Mo-Ag Coatings. Journal of Alloys and Compounds, 686:503-510. https://doi.org/10.1016/j.jallcom.2016.06.075.
  • [7] Sure, J., Shankar, A.R., Upadhyay, B.N., and Mudali, U.K. (2012). Microstructural Characterization of Plasma Sprayed Al2O3-40%wt TiO2 Coatings on High Density Graphite with Different Post-treatments. Journal of Surface & Coatings Technology, (206):4741-4749. https://doi.org/10.1016/j.surfcoat.2012.01.058.
  • [8] Yazdi, R. and Kashani-Bozorg, S.F., (2015). Microstructure and Wear of in-situ Ti/(TiN+TiB) Hybrid Composite Layers Produced Using Liquid Phase Process. Materials Chemistry and Physics, 152:147-157. https://doi.org/10.1016/j.matchemphys.2014.12.026.
  • [9] Islak, S., (2017). Wear Characteristics of FeW/FeW-B4C Coatings Produced by TIG Process. Archives of Metallurgy and Materials 62(4):2001-2006. https://www.doi.org/10.1515/amm-2017-0298.
  • [10] Buytoz, S. and Ulutan, M., (2006). In Situ Synthesis of SiC Reinforced MMC Surface on AISI 304 Stainless Steel by TIG Surface Alloying. Surface and Coatings Technology, 200(12-13):3698-3704. https://doi.org/10.1016/j.surfcoat.2005.02.178.
  • [11] Tianshun, D., Xiukai, Z., Guolu, L., Li, L., and Ran, W., (2018). Microstructure and Corrosive Wear Resistance of Plasma Sprayed Ni-based Coatings After TIG Remelting. Materials Research Express, 5(2):026411. https://doi.org/10.1088/2053-1591/aaadd7.
  • [12] Afzal, M., Khan, A.N., Mahmud, T.B., Khan, T.I., and Ajmal, M., (2015). Effect of Laser Melting on Plasma Sprayed WC-12 wt.% Co Coatings. Surface and Coatings Technology, 266:22-30. https://doi.org/10.1016/j.surfcoat.2015.02.004.
  • [13] Ghadami, F., Sohi, M.H., and Ghadami, S., (2015). Effect of Bond Coat and Post-Heat Treatment on the Adhesion of Air Plasma Sprayed WC-Co Coatings. Surface and Coatings Technology, 261:289-294. https://doi.org/10.1016/j.surfcoat.2014.11.016.
  • [14] Lee, C.H., Kim, H.K., Choi, H.S., and Ahn, H.S., (2000). Phase Transformation and Bond Coat Oxidation behavior of plasma-Sprayed Zirconia Thermal Barrier Coating, Surface and Coatings Technology 124, 1-12. https://doi.org/10.1016/S0257-8972(99)00517-4.
  • [15] Li, C.J., Yang, G.J., and Ohmori, A., (2006). Relationship between Particle Erosion and Lamellar Microstructure for Plasma-Sprayed Alumina Coatings, Wear 260:1166-1172. https://doi.org/10.1016/j.wear.2005.07.006.
  • [16] Islak, S., (2013). Effect of Alumina Addition on the Microstructure Properties of Plasma-Sprayed Zirconia-Alumina Coatings. Optoelectronics and Advanced Materials–Rapid Communications, 7(7-8):585-589.
  • [17] Heimann, R.B., (1996). Plasma-spray Coating, VCH, New York.
  • [18] Pawlowski, L., (2008). The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons, Ltd., England.
  • [19] Kuroda, T. and Kobayashi, A., (2004). Adhesion Characteristics of Zirconia-Alumina Composite Coatings by Gas Tunnel Type Plasma Spraying, Vacuum 73, 635-641. https://doi.org/10.1016/j.vacuum.2003.12.105.
  • [20] Matthews, S., Taliana, F., and James, B., (2012). Heat Treatment of Plasma-sprayed Al2O3 and Al2O3–WO3 Coatings between 500 and 1000°C. Surface and Coatings Technology, 212, 109-118. https://doi.org/10.1016/j.surfcoat.2012.09.030.