Monitoring the soil water content using time domain reflectometry in a clay loam and an organic soil

Bu çalışmada, zaman etkili yansıma ölçer (TDR) ve tansiyometreler, killi tın ve organik toprakla doldurulmuş toprak kolonlarında, toprak su içeriğinde ve toprak su potansiyelindeki değişiklikleri zamana bağlı olarak izlemek için kullanılmışlardır. Toprak kolonları içerisindeki bu değişiklikleri belirlemek için üç çubuklu TDR probları ve tansiyometreler 5, 15, 25, 35 ve 45 cm derinliklerine yerleştirilmişlerdir. Bu denemede, toprak su içeriğindeki ve toprak su potansiyelindeki değişiklikler 20 mm h-1 sabit hızla uygulanan 15 litre saf suyun yağmurlaması süresince ve sonrasında belirlenmiştir. Killi tın toprakta su hareketi başlangıçta hızlı olmuş ve 15 cm derinliğinde ilk değişiklik ilk yarım saat içerisinde belirlenmiş, fakat sonra su hareketin yavaşladığı gözlemlenmiştir. Organik toprakta ise derinliğe bağlı olarak toprak su içeriğindeki değişiklikler killi tın topraktaki ile karşılaştırıldığında yavaş olmuştur. 15 cm derinliğindeki su içeriğindeki ilk değişiklik ancak yağmurlamanın başlamasından 1 saat sonra gözlemlenmiştir. 5 cm derinliğindeki en yüksek su içeriği (% 48,6) ancak yağmurlamanın başlamasından yaklaşık 2,5 saat sonra belirlenmiştir.

Killi tın ve organik toprakta toprak su içeriğinin zaman etkili yansıma ölçer (TDR) kullanılarak izlenmesi

In the present study, Time Domain Reflectometry (TDR) and tensiometers were used to follow changes in soil water content and soil water pressure head over time in soil containers filled with a clay loam soil and an organic soil. The moisture content changes throughout the soil columns were determined by three-rod TDR probes and tensiometers inserted at the depths of 5, 15, 25, 35 and 45 cm. In the experiment, changes in soil water content and soil water pressure head were determined during and after the simulation of 15 L demineralized water applied at a constant rate of 20 mm hr-1. The water movement through the clay loam soil was initially fast and the first moisture content change at the depth of 15 cm was detected during the first half an hour but later slow water movement was observed. For the organic soil, change in the moisture content with depth was slow compared with that of the clay loam soil. The first change in moisture content at the depth of 15 cm was observed after only 1hour from the simulation of water. The highest moisture level, 48.6%, at the depth of 5 cm was determined only after approximately 2.5 hours later from the beginning of simulated rainfall.

___

  • Alharti, A. and J. Lange, 1987. Soil water saturation: Dielectric determination, Water Resources Res. J. 23, 591-595.
  • Baker, J. M. and R. R. Allmaras, 1990. System for automating and multiplexing soil moisture measurement by time domain reflectometry, Soil Sci. Soc. Am. J. 54, 1-6, 1.
  • Dalton, F. N. and M. T. H. Van Genuchten, 1986. The timedomain reflectometry method for measuring soil water content and salinity, Geoderma, 38, 237-250.
  • Dobson, M. C., F. T. Ulaby, M. T. Hallikainen and M. A. El-Rayes, 1985. Microwave dielectric wave of wet soil, part 11: Dielectric mixing models, IEEE Transactions Geoscience Remote Sensing., 73, 616-623.
  • Heimovaara, T. J. and W. Bouten,1990. A computer-controlled 36 channel time domain reflectometry system for monitoring soil water contents, Water Resour. Res., 26, 2311-2316.
  • Herkelrath, W. N., S. P. Hamburg and F. Murpy, 1991.Automatic real-time monitoring of soil moisture in a remote field area with time domain reflectometry, Water Resour. Res. 27, 857-864.
  • Kachanoski, R. G., E. Pringle and A. L. Ward, 1992. A. Field measurements of soil travel times using time domain reflectometry, Soil Sci. Soc. Am. J., 56, 47-52.
  • Ledieu, J., P. De Ridder, P. De Clerck and S. Dauttebande, 1986. A method of measuring soil moisture by time domain reflectometry Journal of Hydrology, 88,319-328.
  • Michiels, P. and E. De Strooper, 1989. bepaling van het vochtgehalte van de bodem met behulp van time domain reflactometry. Theoretische beschouwingen. In: Hartmann R. Bodemfysica Basisprinciples (cursusnota's). Gent, Faculteit van de Landbouwwetschappen, P 50.
  • Patterson, D. E. and M. W. Smith, 1981. The measurement of unfrozen water content by TDR: Results from laboratory test, Can. Geotech. J. 18, 131-145.
  • Roth, K., R. Schulin, H. Flühler and W. Attinger, 1990. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach, Water Resource Res. Vol. 26, No. 10, 2267-2273.
  • Topp, G. C., J. L. Davis and A.P. Annan, 1980. Electromagnetic determination of soil water content: measurements in coaxial transmission lines, Water Resour. Res. 16, 574-582.
  • Topp G. C., S. J. Zegelin and I. White, 2000. Impacts of the real and imaginary components of relative permittivity on time domain reflectometry measurements in soils. Soil Sci. Soc. Am. J. 64: (4) 1244-1252.
  • Vogeler, I., B. E. Clothier, S. R. Green, D. R. Scotter and R. W. Tilmann, 1996. Characterizing water and solute movement by time domain reflectometry and disk permeametry, Soil Sci. Soc. Am. J. 60, 5-12.
  • Ward A. L., R. G. Kachanoski and D. E. Elrick, 1994. Laboratory measurements of solute transport using time domain reflectometry, Soil Sci. Soc. Am. J. 58, 1031-1039.
  • Zegelin, S. J. and I. White, 1989. Improved field probes for soil water content and electrical conductivity measurement using time domain reflectometry, Water Resources Res., 25, 2367-2376.
  • Zegelin, S. J., I. White, G. and F. Rusell, 1992. A critique of the time domain reflectometry technique for determining field soil water content. Advances in measurement of soil physical properties: Bringing theory into practice, Soil Science Society America, Madison, WI, USA. Special Publication 30, 187-208.
Tarım Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Halit APAYDIN