Determination of infrared drying characteristics and modelling of drying behaviour of carrot pomace

Bu çalışmada, havuç posasının kurutma karakteristikleri belirlenmiş ve kuruma süresinin belirli bir anındaki ürünün nem içeriğinin bulunması için mevcut kurutma modellerinin uygulanabilirliği araştırılmıştır. Havuç posası 83, 125, 167 ve 209 W infrared güç seviyelerinde kurutularak kurutma süreleri bulunmuştur. Güç seviyesinin, kurutma hızına ve süresine etki ettiği gözlemlenmiştir. Havuç posasının kurutma kinetiğini belirlenmesi için, elde edilen deneysel veriler 12 adet matematiksel modele uygulanarak en uygun model belirlenmiştir. Elde edilen sonuçlara göre, Agbashlo et al modelinin havuç posasının kuruma davranışını diğerlerinden daha iyi açıkladığı belirlenmiştir. Efektif nem difüziviteleri 0.59 ile 3.40x10-10 m2 s-1 arasında değişmekte olup infrared güç seviyesinden önemli şekilde etkilenmektedir. Arrhenius tip modeli ile aktivasyon enerji hesaplanmış ve 5.73 kW kg-1 olarak bulunmuştur. Anahtar Kelimeler: Aktivasyon enerjisi; Havuç posası; Efektif nem difüzivitesi; İnfrared kurutma; Matematiksel modelleme

Havuç posasının infrared kurutma karakteristiklerinin belirlenmesi ve kurutma davranışının modellenmesi

In this study, drying characteristics of carrot pomace were determined and the applicability of different drying models was investigated in order to find the product’s moisture content at any time of the drying process. Drying times of carrot pomace were found by drying at the infrared power levels of 83, 125, 167 and 209 W. It was observed that the power level affected the drying rate and time. To evaluate the drying kinetics of carrot pomace, the obtained experimental data were applied to twelve mathematical models and the model with the best fit was determined. According to the results, Aghbashlo et al model is superior to the others for explaining drying behavior of carrot pomace. Effective moisture diffusivity varied from 0.59 to 3.40x10-10 m2 s-1 and was significantly influenced by infrared power. Activation energy was estimated by a modified Arrhenius type equation and found to be 5.73 kW kg-1.

___

  • Alibaş İ (2012). Asma yaprağının (Vitis vinifera L.) mikrodalga enerjisiyle kurutulması ve bazı kalite parametrelerinin belirlenmesi. Tarım Bilimleri Dergisi-Journal of Agricultural Sciences 18: 43-53
  • Aghbashlo M, Kianmehr M H, Khani S & Ghasemi M (2009). Mathematical modeling of carrot thin-layer drying using new model. International Agrophysics 23: 313-317
  • Akpınar E K (2010). Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses. Energy Conversion and Management 51: 2407-2418
  • Brooks M S, Abou El-Hana N H & Ghaly A E (2008). Effects of tomato geometries and air temperature on the drying behaviour of plum tomato. American Journal of Applied Sciences 5: 1369-1375
  • Çağlar A, Toğrul I T & Toğrul H (2009). Moisture and thermal diffusivity of seedless grape under infrared drying. Food and Bioproducts Processing 87: 292- 300
  • Corzo O, Bracho N, Pereira A. & Vásquez A (2008). Weibull distribution for modelling air drying of coroba slices. LWT - Food Science and Technology 41: 2023-2028
  • Crank J (1975). The Mathematics of Diffusion, second ed. Oxford University Press, London, UK
  • Dadalı G & Özbek B (2008). Microwave heat treatment of leek: drying kinetic and effective moisture diffusivity. International Journal of Food Science and Technology 43: 1443-1451
  • Demir K & Saçılık, K (2010). Solar drying of Ayaş tomato using a natural convection solar tunnel dryer. Journal of Food, Agriculture and Environment 8 (1): 7-12
  • Dissa A O, Bathiebo D J, Desmorieux H, Coulibaly O & Koulidiati J (2011). Experimental characterization and modelling of thin layer direct solar drying of Amelia and Brooks mangoes. Energy 36: 2517-2527
  • Eim V S, Rosselló C, Femenia A A & Simal S (2011). Moisture sorption isotherms and thermodynamic properties of carrot. International Journal Food Engineering 7 (3): Article 13
  • Erbay Z & Icier F (2010). Thin-layer drying behaviours of olive leaves (Olea Europaea L.). Journal of Food Process Engineering 33: 287-308
  • Evin D (2012). Thin layer drying kinetics of Gundelia tournefortii L. Food and Bioproducts Processing 90: 323-332
  • Hebbar U H & Ramesh M N (2005). Optimisation of
  • processing conditions for infrared drying of cashew kernels with taste. Journal of the Science of Food and Agriculture 85: 865-871
  • Kayışoğlu S & Ertekin C (2011). Vacuum drying kinetics of Barbunya bean (Phaseolus vulgaris L. elipticus Mart.). Philippine Agricultural Scientist 94: 285-291
  • Kocabıyık H & Tezer D (2009). Drying of carrot slices using infrared radiation. International Journal of Food Science and Technology 44: 953-959
  • Kumar N, Sarkar B C & Sharma H K (2012). Mathematical modelling of thin layer hot air drying of carrot pomace. Journal of Food Science and Technology 17: 33-41
  • Montero I, Miranda T, Arranz J I & Rojas C V (2011). Thin layer drying kinetics of by-products from olive oil processing. International Journal of Molecular Sciences 12: 7885-7897
  • Nasıroğlu S & Kocabıyık H (2009). Thin-layer infrared radiation drying of red pepper slices. Journal of Food Process Engineering 32: 1-16
  • Nowak D & Lewicki P P (2004). Infrared drying of apple slices. Innovative Food Science & Emerging Technology 5: 353-360
  • Roberts J S, Kidd D R & Padilla-Zakour O (2008). Drying kinetics of grape seeds. Journal of Food Engineering 89: 460-465
  • Ruiz Celma A, López-Rodríguez F & Cuadros Blázquez F (2009a). Experimental modelling of infrared drying of industrial grape by-products. Food and Bioproducts Processing 87: 247-253
  • Ruiz Celma A, Cuadros Blázquez F & López-Rodríguez F (2009b). Experimental characterisation of industrial tomato by-products from infrared drying process. Food and Bioproducts Processing 87: 282-291
  • Sharma K D, Karki S, Thakur N S & Attri S (2012). Chemical composition, functional properties and processing of carrot – a review. Journal of Food Science and Technology 49: 22-32
  • Sharma G P & Prasad S (2004). Effective moisture diffusivity of garlic cloves undergoing microwave- convective drying. Journal of Food Engineering 65: 609-617
  • Sharma G P, Verma R C & Pathare P B (2005). Thin-layer infrared radiation drying of onion slices. Journal of Food Engineering 67: 361-366
  • Singh B, Panesar PS & Nanda V (2006). Utilization of carrot pomace for the preparation of a value added product. World Journal of Dairy Food Science 1(1): 22-27
  • Sun J, Hu X, Zhao G, Wu J, Wang Z, Chen F & Liao X (2007). Characteristics of thin-layer infrared drying of apple pomace with and without hot air pre-drying. Food Science and Technology International 13(2): 91-97
  • Vega-Gálvez A, Miranda M, Diaz L P, Lopez L, Rodriguez K & Di Scala K (2010). Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresource Technology 101: 7265-7270
  • Verma L R, Bucklin R A, Endan J B & Wratten F T (1985). Effects of drying air parameters on rice drying models. Transaction of ASAE 28: 296-301
  • Wang Z, Sun J, Liao X, Chen F, Zhao G, Wu J & Hu X (2007). Mathematical modeling on hot air drying of thin layer apple pomace. Food Research International 40:39-46
  • Zielinska M & Markowski M (2010). Air drying characteristics and moisture diffusivity of carrots. Chemical Engineering and Processing 49: 212-218
  • Zogzas N P, Maroulis Z B & Marinos-Kouris D (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology 14: 2225-2253
Tarım Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Halit APAYDIN