Characterization of Wild Apricot (Prunus armeniaca L.) Genotypes Selected from Cappadocia Region (Nevşehir-Turkey) by SSR Markers

Characterization of Wild Apricot (Prunus armeniaca L.) Genotypes Selected from Cappadocia Region (Nevşehir-Turkey) by SSR Markers

Cappadocia region of Anatolia hosts the third largest wild apricot population in Turkey. The objective of the study was to characterize 44 wild apricot genotypes selected from Cappadocia Region (Nevşehir-Turkey) as prominent with their late flowering, resistance to spring late frosts, large fruit sizes and/or late fruit ripening characteristics and 5 reference apricot cultivars (‘Hacıhaliloğlu’, ‘Kabaaşı’, ‘Hasanbey’, ‘Aprikoz’ and ‘Levent’) with SSR (simple sequence repeats) markers. A total of 16 SSR primers were used and 13 of them were successfully amplified. Total number of alleles was 107, average number of alleles was 8.23; average He and Ho values were 0.722 and 0.669, respectively. Polymorphism information content (PIC) values varied between 0.471 and 0.845. There was a quite high genetic diversity among wild apricot genotypes that genetic similarity values varied between 12 and 96%. Homonymous and synonymous genotypes were not encountered.

___

  • Akpınar A E, Koçal H, Ergül A, Kazan K, Selli M E, Bakır M, Aslantas Ş, Kaymak S & Sarıbas R (2010). SSR- based molecular analysis of economically important Turkish apricot cultivars. Genetics and Molecular Research 9: 324-332
  • Bouhadida M, Casas A M, Gonzalo M J, Arus P, Morenoa M A & Gogorcena Y (2009). Molecular characterization and genetic diversity of Prunus rootstocks. Scientia Horticulturae 120: 237-245
  • Bourguiba H, Khadari B, Krichen L, Trifi-Farah N, Santoni S & Audergon J M (2010). Grafting versus seed propagated apricot populations: two main gene pools in Tunisia evidenced by SSR markers and model-based Bayesian clustering. Genetica 138: 1023-1032
  • Cipriani G, Lot G, Huang W G, Marrazzo M T, Peterlunger E & Testoline R (1999). AC/GT and AG/ CT microsatellite repeats in peach [Prunus persica (L) Batsch] isolation, characterization and cross- species amplification in Prunus. Theoretical and Applied Genetics 99: 65-72
  • Dumanoğlu H, Bakır M, Ernim C & Macit T (2018). Evaluation of wild apricot (Prunus armeniaca L.) genetic materials around Nevşehir province for late blooming, resistance to late spring frosts, large fruit size and late fruit maturity. The Final Report of Scientific Research and Technological Research Project (114O279). TUBITAK, Ankara
  • Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genetic Resources and Crop Evolution 51: 419-435
  • Eroglu D & Cakir B (2015). Molecular characterization of sweet cherry genotypes and rootstocks by using Prunus SSR sequences. Austin Journal of Biotechnology & Bioengineering 2(3): 1044
  • Gupta P K, Balyan H S, Sharma P C & Ramesh B (1996). Microsatellites in plants: a new class of molecular markers. Current Science 70: 45-54
  • Gürcan K, Öcal N, Yılmaz K U, Ullah S, Erdogan A & Zengin Y (2015). Evaluation of Turkish apricot germplasm using SSR markers: Genetic diversity assessment and search for Plum pox virus resistance alleles. Scientia Horticulturae 193: 155-164
  • Hagen L S, Chaib J, Fady B, Decroocq V, Lambert J P & Audergon J M (2004). Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Molecular Ecology Notes 4: 742-745 Hormaza J I (2002). Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theoretical and Applied Genetics 104: 321- 328
  • Kostina K F (1969). The use of varietal resources of apricots for breeding. Trudy Nikitiskogo Botanicheskogo Sada 40: 45-63
  • Layne R E C, Bailey C H & Hough L F (1996). Apricots. In: J Janick & J N Moore (Eds.) Fruit Breeding: Tree and Tropical Fruits, Jhon Viley & Sons, Inc. New York, pp.79-111
  • Lefort F, Lally M, Thompson D & Douglas G C (1998). Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tuallynally, Ireland. Silvae Genetica 47: 5-6
  • Litt M & Luty J A (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. The American Society of Human Genetics 44: 397-401
  • Liu H U, Liu J, Wang Z, Ma L Y, Wang S Q, Lin X G, Wu R L & Pang X M (2013). Development and characterization of microsatellite markers in Prunus sibirica (Rosaceae). Applications in Plant Sciences 1(3): apps.1200074
  • Liu K & Muse S V (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129
  • Messina R, Lain O, Marrazzo M T, Cipriani G & Testolin R (2004). New set of microsatellite loci isolated in apricot. Moleculer Ecology Notes 4: 432-434
  • Mnejja M, Garcia‐Mas J, Howad W & Arus P (2005). Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Molecular Ecology Notes 5: 531-535
  • Murathan Z T, Kafkas S, Asma B M & Topçu H (2017). S allele identification and genetic diversity analysis of apricot cultivars. The Journal of Horticultural Science and Biotechnology 92: 251-260
  • Nei M (1973). Analysis of gene diversity in subdivided populations. The Proceedings of the National Academy of Science 70: 3321-3323
  • Romero C, Pedryc A, Munoz V, Llacer G & Badenes M L (2003). Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46: 244-252
  • Ruthner S, Pedryc A, Krska B, Romero C & Badenes M L (2006). Molecular characterization of apricot (Prunus armeniaca L.) cultivars using cross species SSR amplification with peach primers. International Journal of Horticultural Science 12: 53-57
  • Sanchez-Perez R, Ruiz D, Dicent F, Egea J & Martínez- Gómez P (2005). Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships. Scientia Horticulturae 103: 305-315
  • Schuelke M (2000). An economic method for the fluorescent labelling of PCR fragments. Nature Biotechnology 18: 233-234
  • Tamura K, Dudley J, Nei M & Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599
  • TUIK (2017). Number of wild apricot trees in Nevşehir. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (Retrieved in 15.12.2017)
  • Ullah S, Aish M, Iqbal H, Hafeez R & Muhammad Z H (2017). Genetic analysis of economically important apricot cultivars in Gilgit Baltistan based on SSR molecular markers. Romanian Biotechnological Letters 22: 12456-12463 Vavilov N I (1951). The Origin, variation, immunity and breeding of cultivated plants (Translated by S. K. Chestitee). Chronica Botonica 13: 1-366
  • Wang Z, Kang M, Liu H, Gao J, Zhang Z, Li Y, Wu R & Pang X (2014). High-level genetic diversity and complex population structure of Siberian apricot (Prunus sibirica L.) in China as revealed by nuclear SSR markers. PLoS One 9, e87381. doi:10.1371/ journal.pone. 0087381
  • Wünsch A (2009). Cross-transferable polymorphic SSR loci in Prunus species. Scientia Horticulturae 120: 348-352
  • Yamamoto T, Mochida K, Imai T, Shi Y Z, Ogiwara T & Hayashi T (2002). Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Molecular Ecology Notes 2: 298-301
  • Zhebentyayeva T N, Reighard G L, Gorina V M & Abbott A G (2003). Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theoretical and Applied Genetics 106: 435-444
  • Zhebentyayeva T, Ledbetter C A, Burgos L & Llàcer G (2012). Apricot. In: M L Badenes & P H Byrne (Eds.) Fruit Breeding, Springer, New York, pp. 415-458
Tarım Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Halit APAYDIN
Sayıdaki Diğer Makaleler

Identification of Barley Landraces and Wild Barley (Hordeum spontaneum) Genotypes Resistant to Rhynchosporium commune

Mohammad Reza AZAMPARSA, İsmail SAYİM, Namuk ERGÜN, Rukiye MURAT DURAN, Kürşad ÖZBEK, Aziz KARAKAYA

Application of Bacteriocin-Like Inhibitory Substances (BLIS)- Producing Probiotic Strain of Lactobacillus plantarum in Control of Staphylococcus aureus in White-Brined Cheese Production

Ayşe GÜRSOY, H. Barbaros ÖZER, Nefise AKÇELIK, Birce MERCANOGLU TABAN, S. Aykut AYTAÇ, Meltem ÇOLAKLAR

Zorlanmış Taşınım ile Farklı Geometrik Şekilli Gıda Ürünlerinin Kurutulmasının Gözenekli Ortam Yaklaşımı ile Nümerik İncelenmesi

Burak TURKAN, Ahmet Serhan CANBOLAT, Akin Burak ETEMOGLU

Ranko Čabilovski, Aboubaker Brayek, Nenad Magazin, Klara Petković, Maja Manojlović

Seed Quality of Oilseed Rape Varieties with Different Size and Colors After Three and Fifteen Months Storage

Rade STANİSAVLJEVİĆ, Dobrivoj POSTIC, Jasmina KNEZEVİC, Dalibor TOMİC, Nadica TMUSIC, Ratibor STRBANOVİC

Effects of Biofloc Technology (BFT) on Growth of Speckled Shrimp (Metapenaeus monoceros)

M. Ayce GENC, O. Tufan EROLDOGAN, Dogukan KAYA, Mevlut AKTAS, Farah G. AYDIN, Ercument GENC

Ghorban NOORMOHAMADİA

A Video Image Segmentation System for the Fruit-trees in Multi-stage Outdoors Orchard under Natural Conditions

Sajad SABZI, Yousef Abbaspour-GILANDEH, Juan Ignacio ARRIBAS

House Dust Mite Species in Ordu Province, Turkey

Rana AKYAZI, Mete SOYSAL, Pavel B. KLIMOV, Yunus Emre ALTUNÇ

Effects of Sowing Date, Cultivar and Chitosan on Quality and Quantity of Rapeseed (Brassica napus L.) Oil

Amir Hossein Shirani RAD, Eslam Majidi HERVAN, Banafsheh Beheshti MONFARED, Ghorban NOORMOHAMADI