Kuantum Biyolojisi

Kuantum biyolojisi, kuantum teorisinin, klasik fiziğin doğru bir tanım veremediği, biyolojinin yönlerine uygulanmasıdır. Bu basit tanımlamaya rağmen, bu alanın bilimsel amaçları ve rolü hakkında tartışmalar devam etmektedir. Bu makale, kuantum biyolojisinin bugün nerede durduğuna dair bir perspektif sunar ve bu alanda daha fazla ilerleme için potansiyel yolları, var olan tartışmaları ve birazda bilim kurgu sayılabilecek ileri zamanları tahmin etmek, okuyucuya hayal dünyası ile bilimsel gerçekler arasında bir resim sunmaktadır.  

Quantum Biology

The Quantum biology is a new branch of science that is born to explain situations in which classical physics cannot accurately give an accurate description of the interactions of the cell with its interior and environment. Despite this simple definition, the debate about the scientific aims and role of this field continues. This paper provides a perspective on where quantum biology stands today and is intended to provide the reader with a picture between the world of imagination and scientific realities, anticipating potential ways of further progress in this field, existing debates, and some future science fiction. 

___

  • Bohr N. (1933). Light and life. Nature, 131, 421-423. (doi:10.1038/)
  • Borst J.W., Visser A.J.W.G. (2010). Fluorescence lifetime imaging microscopy in life sciences, Meas. Sci. Technol., 21, 102002. (doi:10.1088/0957-0233/21/10/102002)
  • Engel G. S., Calhoun T.R., Read E.L., Ahn T-K, Mančal T., Cheng,Y-C, Blankenship R.E., Fleming G.R. (2007). Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature, 446, 782-786. (doi:10.1038/nature05678)
  • Forster T. (1946). Energiewanderung und Fluoreszenz. Naturwissenschaften, 6, 166-175. (doi:10.1007/BF00585226)
  • Gruber J.M, Malý P., Krüger T.P.J., van Grondelle R. (2017). From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective, Nanophotonics, 7, 81-92. (doi:10.1515/nanoph-2017-0014)
  • Jonas D.M. (2003). Two-dimensional femtosecond spectroscopy. Ann. Rev. Phys. Chem., 54, 425-463. (doi:10.1146/annurev.physchem.54.011002.103907)
  • Jordan P. (1932Die). Quantenmechanik und die Grundprobleme der Biologie und Psychologie, Naturwissenschaften, 20, 815-821. (doi:10.1007/BF01494844)
  • Killoran N., Huelga S.F., and Plenio, M.B. (2015) Enhancing light-harvesting power with coherent vibrational interactions: a quantum heat engine picture, Institut f¨ur Theoretische Physik, Albert-Einstein-Allee 11, Universit¨at Ulm, D-89069 Ulm, Germany (Dated: October 22, 2015)
  • Kondo T., Chen W.J., Schlau-Cohen G.S. (2017). Single-molecule fluorescence spectroscopy of photosynthetic systems. Chem. Rev., 117, 860-898. (doi:10.1021/acs.chemrev.6b00195)
  • Liebel M., Toninelli C., van Hulst N.F. (2018). Room-temperature ultrafast nonlinear spectroscopy of a single molecule, Nat. Photonics, 12, 45-49. (doi:10.1038/s41566-017-0056-5)
  • Malý P., Gruber J.M., Cogdel R.J., Mančal T., van Grondelle R. (2016). Ultrafast energy relaxation in single light-harvesting complexes, Proc. Natl Acad. Sci., USA 113, 2934-2939. (doi:10.1073/pnas.1522265113)
  • McKaughan D.J. (2005). The influence of Niels Bohr on Max Delbrück, Isis, 96, 507-529. (doi:10.1086/498591)
  • Moerner W.E, Shechtman Y., Wang Q. (2015) Single-molecule spectroscopy and imaging over the decades. Faraday Discuss,184, 9-36. (doi:10.1039/C5FD00149H)
  • Šrajer V., Schmidt M. (2017). Watching proteins function with time-resolved x-ray crystallography, J. Phys. D: Appl. Phys., 50, 373001. (doi:10.1088/1361-6463/aa7d32)
  • URL-1 (2018). https://royalsocietypublishing.org/doi/full/10.1098/rsif.2018.0640 Young Let al. (2018). Roadmap of ultrafast x-ray atomic and molecular physics, J. Phys. B: At. Mole. Opt. Phys., 5, 032003. (doi:10.1088/1361-6455/aa9735) Crossref, ISI,