Sismik Yükleme Altında Silindirik Çelik Su Tanklarının Gerilme ve Burkulma Analizi

Sıvı depolamak amacıyla kullanılan çelik tanklar arasında en yaygın olanı, silindirik çelik sıvı depolama tanklarıdır.  Deprem esnasında bu tanklarda oluşan hasar tiplerini ve bu hasarlara neden olan etmenleri belirlemek amacıyla yapılan çalışmalarda, sıvı depolama tanklarının depremlerde oldukça kötü performans gösterdikleri ve deprem dayanımlarının arttırılması için yeni yöntemlerin geliştirilmesinin gerekliliği ortaya çıkmıştır. Sıvı-yapı etkileşimini içeren tankların sismik analizi karmaşık bir problemdir. Karmaşıklığın temelinde tankın ince bir cidara sahip olması, cidarın eksenel ve çevresel esnemelerinin ve çalkalanan sıvının modlarının çoklu dinamik tepkilerinin olması, içerdiği sıvının ve titreşen cidarın doğrusal olmayan bir davranışa sahip olması ve tank cidarının burkulma şekil değiştirme modalarına sahip olmasından kaynaklanmaktadır. Tank-sıvı etkileşim sistemlerinin gerçek davranışlarının kısa sürede incelenmesi için en iyi yöntemlerden biride sonlu elemanlar metodudur. Bu çalışmada, sonlu elemanlar metodu (FEM) kullanılarak, sismik yükleme altındaki silindirik çelik sıvı tanklarda meydana gelen gerilmeler ve bu gerilmelere bağlı olarak meydana gelen burkulmalar incelenmektedir. Üstü-açık, konik-kapalı ve kubbe şeklinde kapatılmış tanklar için 4mm, 6mm ve 8mm’lik üç farklı cidar kalınlıklarında yapılan sismik analiz sonucunda, eşdeğer gerilmelerin düşürülmesi ve burkulmaların azaltılması için en iyi tank kapak tasımı belirlenmeye çalışılmıştır.

Stress and Buckling Analysis of Cylindrical Steel Water Tanks under Seismic Loading

The most common tanks are cylindrical steel liquid storage tanks among the steel tanks used to store liquid. In studies conducted to determine the type of damage that occurred in these tanks during the earthquake and the factors that caused these damages, it was revealed that liquid storage tanks performed poorly in earthquakes and requirement of new methods were developed to increase earthquake resistance. Seismic analysis of tanks containing liquid-structure interaction is a complex problem. At the basis of the complexity is the fact that the tank has a thin wall, the multidynamic responses of the axial and circumferential curves of the walls and the modes of agitated liquid, the non-linear behavior of the liquid and vibrating wall it contains and the buckling and deforming modes of the tank wall. One of the best methods for examining the real behavior of tank-liquid interaction systems in a short time is the finite element method. In this study, using the finite element method (FEM), stresses occurring in cylindrical steel liquid tanks under seismic loading and buckling due to these stresses are investigated. Seismic analysis was carried out on three different wall thicknesses of 4mm, 6mm and 8mm for the top-open, conical-closed and dome-closed tanks, and it was tried to determine the best tank lid transport to reduce equivalent stresses and reduce buckling.

___

  • [1] Cooper, T. W., and Wachholz, T. P. 1999. “Optimizing Post-earthquake Lifeline System Reliability” In Proceedings of the 5th US Conference on Lifeline Earthquake Engineering, 878-86.
  • [2] Veletsos, A. S., and Yang, J. Y. 1977. “Earthquake Response of Liquid Storage Tanks—Advances in Civil Engineering through Mechanics” In Proceedings of the Second ASCE (American Society of Civil Engineers) Engineering Mechanics Specialty Conference, 1-24.
  • [3] Haroun, M. A., and Housner, G. W. 1981. “Earthquake Response of Deformable Storage Tanks” Journal of Applied Mechanics 48 (2): 411-8.
  • [4] Chalhoub, M. S., and Kelly, J. M. 1990. “Shake Table Test of Cylindrical Water Tanks in Base Isolated Structures” Journal of Engineering Mechanics 116 (7): 1451-72.
  • [5] Bo, L., and Jia-xiang, T. 1994. “Vibration Studies of Base Isolated Liquid Storage Tanks” Computers and Structures 52 (5): 1051-9.
  • [6] Malhotra, P. K. 1997. “Method for Seismic Base Isolation of Liquid Storage Tanks” Journal of Structural Engineering 123 (1): 1051-9.
  • [7] Shenton, H. W., and Hampton, F. P. 1999. “Seismic Response of Isolated Elevated Water Tanks” Journal of Structural Engineering 125 (9): 965-76.
  • [8] J.C. Virella, L.A.Godoy,L.E.Suarez “Dynamic buckling of anchored steel tanks subjected to horizontal earthquake excitation”, Journal of Constructional Steel Research 62 (2006) 521–531.[9] Jacobsen, L.S., 1949: “Impulsive Hydrodynamics of Fluid Inside a Cylindrical Tank and of a Fluid Surrounding a Cylindrical Pier”, Bulletin of the Seismological Society of America, 39, 189-204.
  • [10] Graham, E.W., and Rodriguez, A.M., 1952: “The Characteristics of Fuel Motion Which Affect Airplane Dynamics”, Journal of Applied Mechanics, 19, 381-388.
  • [11] Housner, G., 1957: “Dynamic Pressure on Accelerated Fluid Containers”, Bulletin of the Seismological Society of America, 47, 15-35. 103
  • [12] Hanson, R.D., 1973: “Behavior of Liquid Storage Tanks, Report”, National Academy of Sciences, Washington D.C., pp. 331-339.
  • [13] Housner, G., 1963: “The Dynamic Behavior of Water Tanks”, Bulletin of the Seismological Society of America, 53, 381-387.
  • [14] Haroun, M.A., 1980: “Dynamic Analyses of Liquid Storage Tanks, Earthquake Engineering Research Laboratory”, Report No. EERL 80-4, California Institute of Technology.
  • [15] Haroun, M.A., 1983: “Vibration Studies and Tests of Liquid Storage Tanks”, Earthquake Engineering and Structural Dynamics, 11, 179 – 206.
  • [16] Haroun, M.A., Tayel, M. A., 1985: “Response of Tanks to Vertical Seismic Excitations”, Earthquake Engineering and Structural Dynamics, 13.
  • [17] Haroun, M.A., and Abdel-Hafiz, E.A., 1986: “A Simplified Seismic Analysis of Rigid Base Liquid Storage Tanks Under Vertical Excitations with Soil-Structure Interaction”, International Journal of Soil Dynamics and Earthquake Engineering, 5, 217-225.
  • [18] Haroun, M.A., and Abou-Izzeddine, W., 1992: “Parametric Study of Seismic Soil-Tank Interaction .1. Horizontal Excitation”, Journal of Structural Engineering, ASCE, 118, 783-797.
  • [19] Grilli, S.T., Skourup, J., and Svendsen, I.A., 1988: “The Modeling of Highly Nonlinear Water-Waves - A Step Toward a Numerical Wave Tank”, Proceedings of the 10th International Conference on Boundary Element Methods, Southampton, England, pp. 549-566.
  • [20] Huang, Y.Y., Wang, S.K., and Cheng, W.M., 1988: “Fluid-Structure Coupling Boundary Element Method for Analyzing Free-Vibration of Axisymmetric Thick-Walled Tanks”, roceedings of the 10th International Conference on Boundary Element Methods, Southampton, England, pp. 521-534.
  • [21] Kondo, H., Yamamoto, S., and Sasaki, Y., 1990: “Fluid-Structure Interaction Analysis Program for Axisymmetric Structures”, JSME International Journal, Series III - Vibration Control Engineering for Industry, 33, 315-322.
  • [22] Gedikli, A., 1996: “Silindirik Sıvı Tanklarda Varyasyonel Sınır Eleman Sonlu Eleman yöntemi ile Sıvı-Yapı Etkileşimi”, Ph.D. Thesis, Istanbul Technical University.
  • [23] Hwang, I.T., and Ting, K., 1989: “Boundary Element Method for Fluid- Structure Interaction Problems in Liquid Storage Tanks”, Journal of Pressure Vessels Technology, III, 435-440.
  • [24] Alemdar Bayraktar ,Barış Sevim, Ahmet Can Altunışık, Temel Türker, “Effect of the model updating on the earthquake behavior of steel storage tanks” , Journal of Constructional Steel Research, Vol 66, 2010, pp 462-468
  • [25] Sunitha K R, Boby Jacob, “Dynamic Buckling Of Steel Water Tank Under Seismic Loading”, International Journal of Civil Engineering (IJCE) ISSN(P): 2278-9987; ISSN(E): 2278-9995 Vol. 4, Issue 6, Oct - Nov 015, 81-90
  • [26] BOLT, B. ve diğ., "The Chile Earthquake of March 3, 1985", Earthquake Spectra, Vol.2, No. 2, Chapter 5, pp. 373- 409, 1986] [NIWA, A. and CLOUGH, R.W., "Buckling of Cylindrical Liquid-Storage Tanks Under Earthquake Loading", Earthquake Engineering and Structural Dynamics, Vol. 10, pp. 107-122, 1982
  • [27] Alper Haluk ALTUN, Seismic Analysis Of Steel Liquid Storage Tanks By Api-650, M.Sc. Thesis, Department of Civil Engineering, Structural Engineering Programme, İTÜ, June 2013
  • [28] Kim, N.S. and Lee, D.G. (1995). “Pseudo-Dynamic Test for Evaluation of Earthquake Performance of Base-Isolated Liquid Storage Tanks”, Engineering Structures, 17(3), 198- 208.Seismology and Earthquake Engineering, 2, 45-54
  • [29] Malhotra, P., Method for seismic base isolation of liquid-storage tanks, Journal of Structural Engineering, ASCE, Vol. 123, No. 1, January, 1997
  • [30] Gökhan YAZICI , Feridun ÇILI, “Silindirik Depolarinin Sismik Yalitim Yöntemiyle Depremden Korunmasi”, Deprem Smpozyumu, 23-25 Mart 2005 Kocaeli.
  • [31] Sudhir K. Jain, IIT Kanpur. “E-Course on Seismic Design of Tanks/ January.» https://civiltechnocrats.files.wordpress.com/.../tanks_lecture. 2006. https://civiltechnocrats.files.wordpress.com/.../tanks_lecture.. (erişildi: 01 11, 2018).
  • [32] Marina E. Kalogerakou a, Charilaos A. Maniatakis a, Constantine C. Spyrakos a , Prodromos N. Psarropoulos, “Seismic response of liquid-containing tanks with emphasis on the hydrodynamic response and near-fault phenomena” , Engineering Structures 153 (2017) 383–403
  • [33] Priestley MJN, Wood JH, Davidson BJ. Seismic design of storage tanks, Bull NZ Natl Soc Earthq Eng 1986;19(4):272–84.
  • [34] Barros RC. “Determination of seismic design envelopes of bottom supported tanks by distinct FEM analyses”, In: Proc. of the 6 Congresso Nacional de Sismologia e Engenharia Sismica. Guimaraes.