PROTECTIVE EFFECT OF THE RAMELTEON, A MELATONIN AGONIST, AGAINST METHOTREXATE-INDUCED BONE-TOXICITY

Objective Methotrexate (MTX) used anti-metabolite, causes bone morbidity, including growth arrest and reduced bone mineral density. Melatonin, produced by the pineal gland, has also multiple positive effects in human bone cells, and positive effects on bone. Ramelteon (RMT) is a non-selective melatonin receptor agonist. In this study, we investigated whether ramelteon, a melatonin agonist, has a protective effect on MTXinduced bone toxicity. Material and Methods The rats divided into 4 groups, including Group 1 control group; Group 2 MTX group (20 mg/kg); Group 3 MTX+RMT (20 mg/kg + 10 mg/kg); Group 4 RMT (10 mg/kg). Oral ramelteon and intraperitoneal mtx were applied to the rats on the second day according to the groups. After 7 days, long bones were evaluated histologically with hematoxylin-eosin (HE) staining and immunohistochemically with Catepsin K and RUN X2 staining. For statistical analysis immunohistochemical scores of the groups were compared between the groups for this purpose, the Oneway ANOVA Duncan test was used by SPSS-22.00 package program. Results There was no significant difference between the control group (group I) and the experimental groups (group II-group III-group IV) in H&E staining of bone tissue sections (p>0.05). No positive staining was observed in any of the groups in CAT-K and RUN-X immunostaining (p>0.05). Conclusion It was showed that ramelteon has no anabolic function in bone turnover, histopathological and immunohistochemical, in bone toxicity induced by high-dose methotrexate on intact bone tissue.

MELATONİN AGONİSTİ OLAN RAMELTEONUN METOTREKSAT KAYNAKLI KEMİK TOKSİSİTESİNE KARŞI KORUYUCU ETKİSİ

Amaç Metotreksat (MTX) büyüme durması ve kemik mineral yoğunluğunun azalması dahil olmak üzere kemik morbiditesine neden olan anti-metabolittir. Epifiz bezi tarafından üretilen melatonin, insan kemik hücrelerinde de birçok olumlu etkiye ve kemik üzerinde olumlu etkilere sahiptir. Ramelteon (RMT), seçici olmayan bir melatonin reseptör agonistidir. Bu çalışmada, bir melatonin agonisti olan ramelteonun MTX kaynaklı kemik toksisitesi üzerinde koruyucu bir etkisinin olup olmadığını araştırdık. Gereç ve Yöntem Sıçanlar Grup 1 kontrol grubu olmak üzere 4 gruba ayrıldı; Grup 2 MTX grubu (20 mg/kg); Grup 3 MTX+RMT (20 mg/kg + 10 mg/kg); Grup 4 RMT (10 mg/kg). Ratlara gruplara göre ikinci gün oral ramelteon ve intraperitoneal mtx uygulandı. 7 gün sonra uzun kemikler hematoksilen-eozin (HE) boyama ile histolojik olarak ve Catepsin K ve RUN X2 boyama ile immünohistokimyasal olarak değerlendirildi. İstatistiksel analiz için grupların immünhistokimyasal skorları gruplar arasında karşılaştırıldı, bu amaçla SPSS-22.00 paket programı ile Oneway ANOVA Duncan testi kullanıldı. Bulgular Kemik doku kesitlerinin H&E boyamasında kontrol grubu (grup I) ile deney grupları (grup II-grup III-grup IV) arasında anlamlı bir fark yoktu (p>0.05). CAT-K ve RUN-X immün boyamasında grupların hiçbirinde pozitif boyanma gözlenmedi (p>0.05). Sonuç Ramelteonun, sağlam kemik dokusu üzerinde yüksek doz metotreksatın neden olduğu kemik toksisitesinde, kemik döngüsünde, histopatolojik ve immünohistokimyasal olarak anabolik bir işlevi olmadığı gösterilmiştir.

___

1. Smolen JS, Landewe R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017;76(6):960-77.

2. Nilsson OS, Bauer FC, Brostrom LA, Nilsonne U. Effect of the antineoplastic agent methotrexate on experimental heterotopic new bone formation in rats. Cancer Res. 1984;44(4):1653-6.

3. Friedlaender GE, Tross RB, Doganis AC, Kirkwood JM, Baron R. Effects of chemotherapeutic agents on bone. I. Short-term methotrexate and doxorubicin (adriamycin) treatment in a rat model. J Bone Joint Surg Am. 1984;66(4):602-7.

4. Demirel A, Kırnap M. Romatoid Artrit Tedavisinde Geleneksel Ve Güncel Yaklaşımlar. Sağlık Bilimleri Dergisi. 2010;19(1):74-84.

5. Reiter RJ, Tan DX, Osuna C, Gitto E. Actions of melatonin in the reduction of oxidative stress. A review. J Biomed Sci. 2000;7(6):444-58.

6. Chen J, Zhang L, Li C, Chen R, Liu C, Chen M. Lipophilized Epigallocatechin Gallate Derivative Exerts Anti-Proliferation Efficacy through Induction of Cell Cycle Arrest and Apoptosis on DU145 Human Prostate Cancer Cells. Nutrients. 2019;12(1).

7. Maria S, Samsonraj RM, Munmun F, Glas J, Silvestros M, Kotlarczyk MP, et al. Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for MT2 melatonin receptors, MEK1/2, and MEK5 in melatonin-mediated osteoblastogenesis. J Pineal Res. 2018;64(3).

8. Amstrup AK, Sikjaer T, Heickendorff L, Mosekilde L, Rejnmark L. Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial. J Pineal Res. 2015;59(2):221-9.

9. Kotlarczyk MP, Lassila HC, O'Neil CK, D'Amico F, Enderby LT, Witt-Enderby PA, et al. Melatonin osteoporosis prevention study (MOPS): a randomized, double-blind, placebo-controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women. J Pineal Res. 2012;52(4):414-26.

10. McGechan A, Wellington K. Ramelteon. CNS Drugs. 2005;19(12):1057-65; discussion 66-7.

11. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021782s011lbl.pdf.

12. Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010;339(1):189-95.

13. Komori T. Signaling networks in RUNX2-dependent bone development. J Cell Biochem. 2011;112(3):750-5.

14. Bossard MJ, Tomaszek TA, Thompson SK, Amegadzie BY, Hanning CR, Jones C, et al. Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J Biol Chem. 1996;271(21):12517-24.

15. Zaidi M, Troen B, Moonga BS, Abe E. Cathepsin K, osteoclastic resorption, and osteoporosis therapy. J Bone Miner Res. 2001;16(10):1747-9.

16. A. Refaiy EM, E. ElGanainy. Semiquantitative Smoothelin Expression in Detection of Muscle Invasion in Transurethral Resection and Cystectomy Specimens in Cases of Urinary Bladder Carcinoma. African Journal of Urology. 2011;17(1):6-10.

17. Singh JA, Saag KG, Bridges SL, Jr., Akl EA, Bannuru RR, Sullivan MC, et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care Res (Hoboken). 2016;68(1):1-25.

18. Romao VC, Lima A, Bernardes M, Canhao H, Fonseca JE. Three decades of low-dose methotrexate in rheumatoid arthritis: can we predict toxicity? Immunol Res. 2014;60(2-3):289-310.

19. Howard SC, McCormick, J., Pui, C. H., Buddington, R. K., & Harvey, R. D. . Preventing and Managing Toxicities of High-Dose Methotrexate. The oncologist. 2016;21(12):1471-82.

20. Crofton PM, Ahmed SF, Wade JC, Stephen R, Elmlinger MW, Ranke MB, et al. Effects of intensive chemotherapy on bone and collagen turnover and the growth hormone axis in children with acute lymphoblastic leukemia. J Clin Endocrinol Metab. 1998;83(9):3121-9.

21. Wheeler DL, Vander Griend RA, Wronski TJ, Miller GJ, Keith EE, Graves JE. The short- and long-term effects of methotrexate on the rat skeleton. Bone. 1995;16(2):215-21.

22. Roth JA, Kim BG, Lin WL, Cho MI. Melatonin promotes osteoblast differentiation and bone formation. J Biol Chem. 1999;274(31):22041-7.

23. Halici M, Oner M, Guney A, Canoz O, Narin F, Halici C. Melatonin promotes fracture healing in the rat model. Eklem Hastalik Cerrahisi. 2010;21(3):172-7.

24. Kose D, Kose A, Halici Z, Gurbuz MA, Aydin A, Ugan RA, et al. Do peripheral melatonin agonists improve bone fracture healing? The effects of agomelatine and ramelteon on experimental bone fracture. Eur J Pharmacol. 2020;887:173577.
Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi-Cover
  • ISSN: 1300-7416
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1994
  • Yayıncı: SDÜ Basımevi / Isparta