EFFECT OF TARGET DELINEATION AND DOSE PARAMETERS ON LOCAL FAILURE PATTERN AFTER ADJUVANT RADIOTHERAPY IN GLIOBLASTOMA: EVALUATION OF EORTC AND RTOG GUIDELINES

Objective We aimed to investigate the correlation between dose distribution and relapse pattern in glioblastoma pa tients who underwent adjuvant radiotherapy (RT) and to discuss European Organisation for Research and Treatment of Cancer (EORTC) and Radiation The rapy Oncology Group (RTOG) guidelines commonly used for target volume delineation. Materials and Method Thirty-one consecutive glioblastoma patients who underwent adjuvant concomitant chemoradioterapy (temozolamide) after biopsy or surgical resection in our clinic between October 2011 and June 2018 were enrolled. Total dose of 60 Gy with 14 Gy boost af ter 46 Gy RT was given with 3 dimensional confor mal (3DCRT) in 22 patients and intensity modulated technique (IMRT) in 9 patients. All patients were ad ministered concomitant temozolamide 75 mg/m2/day. The MR images taken within 2 weeks before RT is considered as basal investigation. Recurrent lesions in control MR spectroscopy images within 2-3 months after RT were retrospectively contoured by a radio logist and fused with planning CT images. Increase in contrast enhancement and enhanced volume in T1 MR sequences or increase in edema in T2/FLAIR sequences is reported as progression. Recurrence is defined as new emerged lesions apart from resection cavity or known postoperative residual lesion. The fu sed images are evaluated dosimetrically to calculate D95 (Dose of %95 volume), D50 (Dose of %50 volu me), V%95 (volume receiving % 95 of planned dose) of recurrent area. Results Median age of patients was 59 (28 -78) years with a median survival of 17 (5 - 66) months in 17 (5 -64) months of median follow up. Median overall survival was found to be 17 (5 - 66) months. GTR, subtotal resection (STR) and biopsy were performed in 19, 10 and 2 patients respectively. All but one patient had re sidual mass in the postroperative images. During fol low up 1 patient progressed whereas 16 patient was stable. Recurrence was detected in 14 patients. Who le volume of recurred lesions was in PTV60 in 12 pa tients. In the remaining 2 patients, volume of recurrent lesion in PTV60 were 98.7 and 61.8 % respectively. Mean recurrent volume was found 11.14 (0.7 – 48) cc. The mean of maximum, minimum and mean do ses were 6246 cGy (6043 – 6439), 5805 cGy (3574 – 6098) and 6106 cGy (5906 – 6223) respectively. Conclusion In our study 95% of the recurrent lesions were in PTV 60. In our opinion, the contribution of 46 Gy to edema, especially for patients with a large operation cavity and residual lesion which could cause high normal tis sue toxicity is controversial. Therefore, single phase treatment is reasonable in these patients.

GLİOBLASTOMA OLGULARINDA HEDEF BELİRLENMESİ VE DOZ PARAMETRELERİNİN ADJUVAN RADYOTERAPİ SONRASI LOKAL NÜKS PATERNİ ÜZERİNE ETKİSİ: EORTC VE RTOG KILAVUZLARININ DEĞERLENDİRİLMESİ

Amaç Çalışmamızın amacı glioblastoma (GBM) tanısı ile adjuvan radyoterapi (RT) eş zamanlı temozolamid uygulanmış olan hastalarda nüks paterninin doz dağı lımı ile ilişkisinin değerlendirilmesidir. Buna ek olarak çalışma sonuçlarının ışığında GBM olgularında RT hedef belirlenmesinde kullanılan European Organisa tion for Research and Treatment of Cancer (EORTC) ve Radiation Therapy Oncology Group (RTOG) kıla vuzları tartışılması amaçlandı. Gereç ve Yöntem Kliniğimizde, biyopsi veya cerrahi eksizyon sonrası GBM tanısı almış ve Ekim 2011 – Haziran 2018 ta rihleri arasında adjuvan RT eş zamanlı temozolamid uygulanmış 31 hasta çalışmaya alındı. Radyoterapi 22 hastaya 3 boyutlu konformal, 9 hastaya ise yo ğunluk ayarlı RT tekniği ile 46 Gy (Faz I) sonrası 14 Gy boost (Faz II) olmak üzere toplam 60 Gy şeklinde uygulandı. Tüm hastalar RT eş zamanlı 75 mg /m2/ gün temozolamid aldı. Hastaların radyoterapi öncesi iki hafta içerisinde çekilmiş olan MR görüntüleri baz olarak alındı. Radyoterapi sonrası 2-3. ay veya son rasındaki kontrol T1 MR görüntülerinde operasyon kavitesi veya postoperatif rezidüel lezyonun kontrast tutulumunda artış, kontrast tutan volümde artış, T2/ FLAIR görüntülerde ödemde artış olan hastalar prog resyon olarak değerlendirilirken operasyon kavitesi veya postoperatif rezidüel lezyondan ayrı, yeni geli şen lezyonlar nüks olarak kabul edildi. Nüks lezyonlar uzman radyolog tarafından MR spektroskopi görüntü leri üzerine konturlandı. Bu görüntüler planlama CT görüntüleri ile füzyon yapılarak nüks lezyon alanının retrospektif dozimetrik değerlendirilmesi yapıldı. Do zimetrik incelemede nüks lezyon alanının maksimum, minimum ve ortalama dozları, D95(%95 inin aldığı doz), D50 (%50 sinin aldığı doz), V%95 (planlanan dozun %95 ini alan volüm) değerlendirildi. Bulgular Çalışmaya alınan 31 hastanın ortalama yaşı 59 yıl (28 -78) olup median takip süresi 17 (5 -64) aydır. Median genel sağkalım 17 (5 - 66) ay olarak bulundu. Ope rasyon 19 hastada GTR, 10 hastada STR şeklinde olup 2 hasta biyopsi ile tanı almış idi. Bir hasta hariç tüm hastalarda postoperatif MR görüntülerinde rezidü mevcut idi. Takip süresinde 1 hastada progresyon, 14 hastada nüks saptanırken 16 hastanın stabil olduğu gözlendi. Nüks olan 12 hastada lezyon %100 oranın da PTV60 içinde yer almakta iken kalan iki hastada bu oran sırasıyla %98.7 ve 61.8 idi. Ortalama nüks volü mü 11.14 (0.7 – 48) cc olarak bulundu. Nüks lezyon ların ortalama maksimum, minimum ve mean dozları, D95, D50, V%95 sırasıyla 6246 cGy (6043 – 6439), 5805 cGy (3574 – 6098) ,6106 cGy (5906 – 6223), 5941 cGy (4588 – 6162), 6123 cGy (6009 – 6217), 11,04 cc (0.7 – 48.37) idi. Sonuç Çalışmamızda rekürren lezyonların % 95 oranında PTV 60 içerisinde olduğu görüldü. Bu sonuç baz alın dığında, ödem alanını içeren hedef volüme faz I ola rak 46 Gy uygulanmasının katkısı tartışmalıdır. Özel likle operasyon kavitesi ve rezidü boyutu büyük olan ve normal doku toksistesinin yüksek olacağı öngörü len hastalarda tek fazlı tedavi tercih edilebilir.

___

1. Louis N, Perry A, Reifenberge RG, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016;131:803–20. doi:10.1007/ s00401-016-1545-1

2. Trip AK, Jensen MB, Kallehauge JF, Lukacova S. Individualizing the radiotherapy target volume for glioblastoma using DTI-MRI: a phase 0 study on coverage of recurrences. Acta Oncol. 2019;58(10):1532-1535. doi: 10.1080/0284186X.2019. 1637018.

3. Tamimi AF, Juweid M. Epidemiology and Outcome of Glioblastoma. In: Steven De Vleeschouwer. Glioblastoma (1st Ed). Brisbane, Codon Publications 2017; 143-54

4. Johnston A, Creighton N, Parkinson J, Koh ES, Wheeler H, Hovey E, et al . Ongoing improvements in postoperative survival of glioblastoma in the temozolomide era: a population-based data linkage study. Neurooncol Pract. 2020;7(1):22-30. doi: 10.1093/nop/npz021.

5. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352:987– 96. Doi:10.1056/NEJMoa043330.

6. Bi WL, Beroukhim R. Beating the odds: extreme long-term survival with glioblastoma. Neuro Oncol. 2014;16(9):1159-60. doi: 10.1093/neuonc/nou166.

7. Johnson DR, Omuro AMP, Ravelo A, Sommer N, Guerin A, Ionescu-Ittu R, et al. Overall survival in patients with glioblastoma before and after bevacizumab approval. Curr Med Res Opin. 2018;34(5):813-820. doi: 10.1080/03007995.2017.1392294.

8. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTCNCIC trial. Lancet Oncol 2009;10:459–66. doi:10.1016/S1470-2045 (09)70025-7.

9. Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow up. Ann Oncol 2014;25:93– 101.doi: 10.1093/annonc/mdu050

10. Walker MD, Green SB, Byar DP, Alexander E Jr, Batzdorf U, Brooks WH, et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 1980;303:1323–9. Doi: 10.1056/ NEJM198012043032303

11. Shah JL, Li G, Shaffer JL, Azoulay MI, Gibbs IC, Nagpal S, et al. Stereotactic Radiosurgery and Hypofractionated Radiotherapy for Glioblastoma. Neurosurgery. 2018;82(1):24-34. doi: 10.1093/neuros/nyx115.

12. Thippu Jayaprakash K, Wildschut K, Jena R. Feasibility of Hippocampal Avoidance Radiotherapy for Glioblastoma. Clin Oncol (R Coll Radiol). 2017;29(11):748-752. doi: 10.1016/j. clon.2017.06.010.

13. Azoulay M, Shah J, Pollom E, Soltys SG. New Hypofractionation Radiation Strategies for Glioblastoma. Curr Oncol Rep. 2017 ;19(9):58. doi: 10.1007/s11912-017-0616-3.

14. Hou Y, Zhang Y, Liu Z, Yv L, Liu K, Tian X, et al. Intensity-modulated radiotherapy, coplanar volumetric-modulated arc, therapy, and noncoplanar volumetric-modulated arc therapy in, glioblastoma: A dosimetric comparison. Clin Neurol Neurosurg. 2019;187:105573. doi: 10.1016/j.clineuro.2019.105573.

15. Peeken JC, Molina-Romero M, Diehl C, Menze BH, Straube C, Meyer B, et al. Deep learning derived tumor infiltration maps for personalized target definition in Glioblastoma radiotherapy. Radiother Oncol. 2019;138:166-172. doi: 10.1016/j. radonc.2019.06.031.

16. Dhermain F. Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches. Chin J Cancer. 2014;33(1):16-24. doi: 10.5732/cjc.013.10217.

17. Nelson DF, Curran WJ Jr, Scott C, Nelson JS, Weinstein AS, Ahmad K, et al. Hyperfractionated radiation therapy and bis-chlorethyl nitrosourea in the treatment of malignant glioma—possible advantage observed at 72.0 Gy in 1.2 Gy B.I.D. fractions: Report of the Radiation Therapy Oncology Group Protocol 8302. Int J Radiat Oncol Biol Phys 1993;25:193–207.

18. Urtasun RC, Kinsella TJ, Farnan N, DelRowe JD, Lester SG, Fulton DS. Survival improvement in anaplastic astrocytoma, combining external radiation with halogenated pyrimidines: Final report of RTOG 86-12, Phase I-II study. Int J Radiat Oncol Biol Phys 1996;36:1163–1167. doi: 10.1016/s0360- 3016(96)00429-4

19. Niyazi M, Brada M, Chalmers AJ, Combs SE, Erridge SC, Fiorentino A, et al. ESTRO-ACROP guideline "target delineation of glioblastomas". Radiother Oncol. 2016;118 (1):35-42. doi: 10.1016/j.radonc.2015.12.003

20. Gilbert MR, Wang M, Aldape KD, et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 2013;31:4085–91. Doi:10.1200/ JCO.2013.49.6968.

21. Halperin EC, Bentel G, Heinz ER, Burger PC. Radiation therapy treatment planning in supratentorial glioblastoma multiforme: An analysis based on post mortem topographic anatomy with CT correlations. Int J Radiat Oncol Biol Phys 1989;17:1347– 1350.n;118(1):35-42. doi: 10.1016/j.radonc.2015.12.003

22. Bashir R, Hochberg F, Oot R. Regrowth patterns of glioblastoma multiforme related to planning of interstitial brachytherapy radiation fields. Neurosurgery 1988;23:27–30. doi:10.1227/00006123-198807000-00006.

23. Bette S, Barz M, Huber T, Straube C, Schmidt-Graf F, Combs SE, et al. Retrospective analysis of radiological recurrence patterns in glioblastoma, their prognostic value and association to postoperative infarct volume. Sci Rep 2018;8:1–12. Doi:10.1038/s41598-018-22697-9.

24. Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol 1989;16:1405–9. Doi:10.1016/0360-3016(89)90941-3.

25. Aydın H, Sillenberg I, von Lieven H. Patterns of failure following CT-based 3-D irradiation for malignant glioma. Strahlenther Onkol 2001;177:424–31. Doi:10.1007/PL00002424.

26. Liang BC, Thornton AF Jr, Sandler HM, Greenberg HS. Malignant astrocytomas: Focal tumor recurrence after focal external beam radiation therapy. J Neurosurg 1991;75:559 –563.

27. Hochberg FH, Pruitt A. Assumptions in the radiotherapy of glioblastoma. Neurology 1980;30:907–911.

28. Hess CF, Schaaf JC, Kortmann RD, Schabet M, Bamberg M. Malignant glioma: Patterns of failure following individually tailored limited volume irradiation. Radiother Oncol 1994;30:146 –149.

29. Massey V, Wallner KE. Patterns of second recurrence of malignant astrocytomas. Int J Radiat Oncol Biol Phys 1990; 18:395– 398.

30. Capper D. Addressing diffuse glioma as a systemic brain disease with single cell analysis. Arch Neurol 2012;69:523. Doi:10.1001/archneurol.2011.2910.

31. Kleihues P, Ohgaki H. Primary and secondary glioblastomas: From concept to clinical diagnosis. Neuro Oncol. 1999;1:44– 51. Doi:10.1215/15228517-1-1-44.

32. Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clin Cancer Res. 2013;19:764–72. Doi:10.1158/1078-0432.CCR-12-3002.

33. Syed M, Liermann J, Verma V, Bernhardt D, Bougatf N, Paul A, et al. Survival and recurrence patterns of multifocal glioblastoma after radiation therapy. Cancer Manag Res. 2018;10:4229– 4235. doi: 10.2147/CMAR.S165956.

34. Minniti G, Amelio D, Amichetti M, Salvati M, Muni R, Bozzao A,et al. Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide. Radiother Oncol. 2010;97: 377–381. doi: 10.1016/j. radonc.2010.08.020.

35. Choi SH, Kim JW, Chang JS, Cho JH, Kim SH, Chang JH, et al. Impact of including peritumoral edema in radiotherapy target volume on patterns of failure in glioblastoma following temozolomide-based chemoradiotherapy. Sci Rep. 2017;7:42148. doi: 10.1038/srep42148.

36. Barajas RF Jr, Hess CP, Phillips JJ, Von Morze CJ, Yu JP, Chang SM, et al. Super-resolution track density imagingof glioblastoma: histopathologic correlation. AJNR Am J Neuroradiol 2013; 34: 1319-25. doi: 10.3174/ajnr.A3400.

37. Chang EL, Akyurek S, Avalos T, Rebueno N, Spicer C, Garcia J et al. Evaluation of peritumoral edema in the delineation of radiotherapy clinical target volumes for glioblastoma. Int J Radiat Oncol Biol Phys. 2007;68(1):144-50. Doi: 10.1016/j.ijrobp.2006.12.009

38. Burger PC, Heinz ER, Shibata T, Kleihues P. Topographic anatomy and CT correlations in the untreated glioblastoma multiforme.J Neurosurg 1988;68:698 –704.

39. Kelly PJ, Daumas-Duport C, Scheithauer BW, Kall BA, Kispert DB. Stereotactic histologic correlations of computed tomography and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc 1987;62: 450 – 459.

40. Lee SW, Fraass BA, Marsh LH, Herbort K, Gebarski SS, Martel MK, et al. Patterns of failure following high-dose 3-D conformal radiotherapy for highgrade astrocytomas: A quantitative dosimetric study. Int J Radiat Oncol Biol Phys 1999;43:79–88. Doi: 10.1016/s0360-3016(98)00266-1

41. Chan JL, Lee SW, Fraass BA, Normolle DP, Greenberg HS, Junck LR, et al. Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 2002;20:1635–1642. Doi: 10.1200/JCO.2002.20.6.1635

42. Straube C, Elpula G, Gempt J, Gerhardt J, Bette S, Zimmer C, et al. Re-irradiation after gross total resection of recurrent glioblastoma : Spatial pattern of recurrence and a review of the literature as a basis for target volume definition. Strahlenther Onkol. 2017;193(11):897-909. doi: 10.1007/s00066-017-1161- 6.

43. Grosu AL, Weber WA, Astner ST, Adam M, Krause BJ, Schwaiger M, et al. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2006;66:339–44. Doi:10.1016/j.ijrobp.2006.02.047.

44. Harat M, Małkowski B, Makarewicz R. Pre-irradiation tumour volumes defined by MRI and dual time-point FET-PET for the prediction of glioblastoma multiforme recurrence: a prospective study. Radiother Oncol 2016;120:241–7. Doi:10.1016/j.radonc.2016.06.004.

45. Cordova JS, Shu HKG, Liang Z, et al. Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. Neuro Oncol 2016;18:1180–9. Doi:10.1093/neuonc/ now036.

46. Unkelbach J, Menze BH, Konukoglu E, Dittmann F, Le M, Ayache N, et al. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation. Phys Med Biol 2014;59:747. Doi:10.1088/0031-9155/59/3/771.

47. Lipkova J, Angelikopoulos P, Wu S, Alberts E, Wiestler B, Diehl C, et al. Personalized radiotherapy design for glioblastoma: integrating mathematical tumor models, multimodal scans and bayesian inference. IEEE Trans Med Imaging 2019:1. Doi:10.1109/TMI.2019.2902044.

48. Pyka T, Gempt J, Hiob D, Ringel F, Schlegel J, Bette S, et al. Textural analysis of pre-therapeutic [18F]-FETPET and its correlation with tumor grade and patient survival in high-grade gliomas. Eur J Nucl Med Mol Imaging 2016;43:133–41. Doi:10.1007/s00259-015-3140-4.

49. Poulsen SH, Urup T, Grunnet K, Christensen IJ, Larsen VA, Jensen ML, et al. The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 2016:1–9. Doi:10.1007/s00259-016-3494-2.

50. Zikou A, Sioka C, Alexiou GA, Fotopoulos A, Voulgaris S, Argyropoulou MI. Radiation Necrosis, Pseudoprogression, Pseudoresponse, and Tumor Recurrence: Imaging Challenges for the Evaluation of Treated Gliomas. Contrast Media Mol Imaging. 2018;2018:6828396. doi: 10.1155/2018/6828396.

51. Delgado-López PD, Riñones-Mena E, Corrales-García EM. Treatment-related changes in glioblastoma: a review on the controversies in response assessment criteria and the concepts of true progression, pseudoprogression, pseudoresponse and radionecrosis. Clin Transl Oncol. 2018;20(8):939-953. doi: 10.1007/s12094-017-1816-x.

52. Aydin O, Buyukkaya R, Hakyemez B. Susceptibility Imaging in Glial Tumor Grading; Using 3 Tesla Magnetic Resonance (MR) System and 32 Channel Head Coil. Pol J Radiol. 2017 Apr 1;82:179-187. doi: 10.12659/PJR.900374.

53. Hsu CC, Watkins TW, Kwan GN, Haacke EM. Susceptibility-Weighted Imaging of Glioma: Update on Current Imaging Status and Future Directions. J Neuroimaging. 2016;26(4):383- 90. doi: 10.1111/jon.12360.

54. Yazol M, Öner A.Y. Beyin Gliomlarında Manyetik Rezonans Görüntüleme Trd Sem 2016; 4: xx

55. Taylor JS, Langston JW, Reddick WE, Kingsley PB, Ogg RJ, Pui MH, et al. Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int J Radiat Oncol Biol Phys 1996; 36: 1251-61. Doi: 10.1016/s0360-3016(96)00376-8
Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi-Cover
  • ISSN: 1300-7416
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1994
  • Yayıncı: SDÜ Basımevi / Isparta
Sayıdaki Diğer Makaleler

SCHWANNOMA İLE KARIŞAN MALİGN SOLİTER FİBRÖZ TÜMÖR : BİR OLGU SUNUMU

Süleyman Emre AKIN, Hıdır ESME, Ferdane Melike DURAN

GLİOBLASTOMA OLGULARINDA HEDEF BELİRLENMESİ VE DOZ PARAMETRELERİNİN ADJUVAN RADYOTERAPİ SONRASI LOKAL NÜKS PATERNİ ÜZERİNE ETKİSİ: EORTC VE RTOG KILAVUZLARININ DEĞERLENDİRİLMESİ

İbrahim ÇOBANBAŞ, E.Elif ÖZKAN, Şehnaz EVRİMLER, Z.Arda KAYMAK, Mustafa KAYAN

ISPARTA İLİNDE ADLİ GERİATRİK ÖLÜMLER: 2010 - 2018 VERİLERİ

Abdulkadir YILDIZ, Erdinç ÇAYLI, Özgür Rıza KAYGUSUZ, Gülsüm Hülya KARA

2011-2017 YILLARI ARASINDA KLİNİĞİMİZDE İKİZ DOĞUM YAPAN TÜRKİYE CUMHURİYETİ VATANDAŞLARI VE SURİYELİ GÖÇMENLERİN FETAL MATERNAL KLİNİK ÖZELLİKLERİNİN KARŞILAŞTIRILMASI

Mustafa Doğan ÖZÇİL, Arif GÖNGÖREN

PROSTAT ADENOKARSİNOMLARINDA İĞNE BİYOPSİLERİ İLE RADİKAL PROSTATEKTOMİ MATERYALLERİ ARASINDAKİ GLEASON SKOR UYUMSUZLUĞU

Sefa Alperen ÖZTÜRK, Tayfun ÇİFTECİ, Alper ÖZORAK, Sedat SOYUPEK, Taylan OKSAY, Osman ERGÜN, Alim KOŞAR, Murat DEMİR

SALVAGE TREATMENT OPTION FOR METASTATIC COLORECTAL CANCER: REGORAFENIB

Havva ÇINKIR

PULMONER TROMBOEMBOLİ ŞÜPHESİNDE BT ANJİOGRAFİNİN VERİMLİLİĞİ VE PULMONER TROMBOEMBOLİ DIŞI RADYOLOJİK BULGULARIN ANALİZİ

Çisel YAZGAN, Hakan ERTÜRK, Ayşenaz TAŞKIN

EROZİV ORAL LİKEN PLANUS’TA ENJEKTE EDİLEBİLEN TROMBOSİTTEN ZENGİN FİBRİN: ÇİFT KÖR, BÖLÜNMÜŞ AĞIZ, RANDOMİZE KONTROLLÜ PİLOT ÇALIŞMA

Ebru SAĞLAM, Zeliha Betül ÖZSAĞIR, Tuğba ÜNVER, Ali TOPRAK, Suzan Bayer ALINCA, Mustafa TUNALI

OPTİK STRUT MORFOMETRİSİ: RADYOANATOMİK ÇALIŞMA

Hakan ÖZALP, Barış TEN, Orhan BEGER, Pourya TAGHİPOUR, Salim ÇAKIR, Deniz Ladin ÖZDEMİR, Fatma MÜDÜROĞLU, Vural HAMZAOGLU, Ahmet DAĞTEKİN, Derya Ümit TALAS

HEMATOLOJİK MALİGNİTELERDE KONVANSİYONEL SİTOGENETİK, MOLEKÜLER SİTOGENETİK VE MOLEKÜLER GENETİK SONUÇLARININ DEĞERLENDİRİLMESİ

Barbaros YİĞİT, Pınar ASLAN KOŞAR, Emine Güçhan ALANOĞLU, Muhammet Yusuf TEPEBAŞI