TlGa1-xInxTe2 (x=0.00, 0.25, 0.50, 0.75) Alaşımlarının Yapısal ve Elektronik Özellikleri

Bu çalışmada, yoğunluk fonksiyonel teorisi dahilinde lineer genişletilmiş düzlem dalga metodu kullanılarak TlGa1-xInxTe2 alaşımlarının yapısal ve elektronik özellikleri incelendi. TlGa1-xInxTe2 (x=0.25, 0.50, 0.75) alaşımları, TlInTe2 ve TlGaTe2 alaşımları gibi tetragonal yapıya sahiptir. Alaşımların Kristal yapıları P1 ( ) uzay grubu kullanılarak elde edildi. Yapısal hesaplamalardan, birim hücre içerisindeki In konsantrasyonunun artışı ile örgü parametresi a ve birim hücre hacminin arttığını tespit edildi. Incelenen alaşımların, elektronik band yapı ve durum yoğunluğu hesaplamalarından, yarıiletken özellik sergilediğini bulundu. Ayrıca, alaşımların yasak band enerjisinin x konsantrasyonuna bağlı olarak değiştiği tespit edildi. Hesaplanan yasak band enerjileri alaşımların dar band aralıklı yarıiletken olduğunu göstermektedir.  Bu çalışmanın bulduları dörtlü TlGa1-xInxTe2 (x=0.25, 0.50, 0.75) alaşımları ile ilgilenen araştırmacılar için iyi bir referans çalışma olacaktır.

The Structural and Electronic Properties of TlGa1-xInxTe2 (x=0.00, 0.25, 0.50, 0.75) Alloys

In this study, the structural and electronic properties of TlGa1-xInxTe2alloys have been investigated using the full potential linearized augmented plane wave (FP-LAPW) method within the density functional theory (DFT). The TlGa1-xInxTe2 (x=0.25, 0.50, 0.75) alloys have tetragonal structure as in TlInTe2 and TlGaTe2 alloys. We create the crystal structure of these alloys using the P1  space group. We found that the value of the lattice parameter a and volume of unit cell increases with increasing In concentrations. These alloys have characteristics of semiconductors. Moreover, we show that the band gap energy is dependent on the alloy composition index x. The calculated band gap energies indicate that all the studied alloys here are characterized by narrow band-gap semiconductors. The finding of this study motivates further future studies for concerning quaternary TlGa1-xInxTe2 for x=0.25, 0.50 and 0.75 alloys.

___

  • [1] Isik, M., Gasanly, N.M., 2013. Interband critical points in TlGaxIn1-xS2 layered mixed crystals (0≤x≤1), Journal of Alloys and Compounds, 581 (2013), 542–546.
  • [2] Kato, A., Nishigaki, M., Mamedov, N., Yamazaki, M. Abdullayeva, S., Kerimova, E., Uchiki, H., Iida, S., 2003. Optical properties and photo-induced memory effect related with structural phase transition in TlGaS2, Journal of Physics and Chemistry of Solids, 64 (2003), 1713–1716.
  • [3] Abay, B., Güder, H. S., Efeoğlu, H., Yoğurtçu, Y. K., 2001. Urbach-Martienssen Tails in the Absorption Spectra of Layered Ternary Semiconductor TlGaS2, phys. stat. sol. (b), 227 (2001), 469-476.
  • [4] Allakhverdiev, K. R., Mammadov, T. G., Suleymanov, R. A., Gasanov, N. Z., 2003. Deformation effects in electronic spectra of the layered semiconductors TlGaS2, TlGaSe2 and TlInS2, J. Phys.: Condens. Matter, 15(2003), 1291–1298.
  • [5] Isik, M., Gasanly, N.M., 2009. Trapping centers and their distribution in Tl2Ga2Se3S layered single crystals, Journal of Physics and Chemistry of Solids, 70(2009), 1048–1053.
  • [6] Al Orainy, R.H., 2014. Charge transport properties of Tl2GaInSe4 prepared by Bridgman technique, Superlattices and Microstructures, 65(2014), 177–183.
  • [7] Qasrawi, A.F., Gasanly, N.M., 2013. Mixed conduction and anisotropic single oscillator parameters in low dimensional TlInSe2 crystals, Materials Chemistry and Physics, 141(2013), 63-68.
  • [8] Abay, B., Gürbulak, B., Yıldırım, M., Efeoğlu, H., Yoğurtçu, Y. K., Electrothermal Investigation of the Switching Phenomena in p-Type TlInSe2 Single Crystals, Phys. stat. sol. (a), 153(1996), 145-151.
  • [9] Qasrawi, A.F., Gasanly, N.M., 2004. Electrical conductivity and Hall mobility in p-type TlGaSe2 crystals, Materials Research Bulletin, 39(2004), 1353–1359.
  • [10] Watzke, O., Schneider, T., Martienssen, W., 2000. Crisis induced intermittency in the electrical conductivity of TlInTe2, Chaos Solitons and Fractals, 11(2000), 1163-1170.
  • [11] Abay, B., Gürbulak, B., Yıldırım, M., Efeoğlu, H., Tüzemen, S., Yoğurtçu, Y.K., 1996. Electrothermal Investigation of the Switching Effect in p-Type TIInSe2, TIInTe2, and TIGaTe2 Chain Chalcogenide Semiconductors, Journal of Electronic Materials, 25(1996), 1054-1059.
  • [12] Asadov, M. M., Mustafaeva, S. N., Mamedov ,A. N., Tagiyev, D. B., 2015. Effect of Composition on the Properties of (TlInSe2)1-x(TlGaTe2)x Solid Solutions, Inorganic Materials, 51(2015), 1232–1236.
  • [13] Petersen, M., Wagner, F., Hufnagel, L., Scheffler, M., Blaha, P., Schwarz, K., 2000. Improving the efficiency of FP-LAPW calculations, Computer Physics Communications, 126(2000), 294–309.
  • [14] Schwarz, K., 2003. DFT calculations of solids with LAPW and WIEN2k, Journal of Solid State Chemistry, 176(2003), 319–328.
  • [15] Schwarz, K., Blaha, P., Madsen, G.K.H., 2002. Electronic structure calculations of solids using the WIEN2k package for material sciences, Computer Physics Communications, 147(2002), 71–76.
  • [16] Schwarz, K., Blaha, P., 2003. Solid state calculations using WIEN2k, Computational Materials Science, 28(2003), 259–273.
  • [17] Schwarz, K., Blaha, P., Trickey, S.B., 2010. Electronic structure of solids with WIEN2k, Molecular Physics, 108(2010), 3147-3166.
  • [18] Banys, J., Wondre, F.R., Guseinov, G., 1990. Powder Diffraction Study of TlGaTe2, TlInTe2 and TlInSe2, Materials Letters, 9(1990), 269-274.
  • [19] Perdew, J.P., Burke, K., Ernzerhof, M., 1996. Generalized Gradient Approximation Made Simple, Physical Review Letters, 77(1996), 3865-3868.
  • [20] Tran, F., Blaha, P., 2009. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Physical Review Letters, 102(2009) 226401-226404.
  • [21] Murnaghan, F.D., 1944. The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences of the United States of America, 30(9) (1944), 244-247.
  • [22] Ben Nasr T., Ben Abdallah H., Bennaceur R., First-principles study of the electronic and the optical properties of In6Se7 compound, Physica B 405 (2010), 3427–3432.