The Structural and Electronic Properties of TlGa1-xInxTe2 (x=0.00, 0.25, 0.50, 0.75) Alloys

Bu çalışmada, yoğunluk fonksiyonel teorisi dahilinde lineer genişletilmiş düzlem dalga metodu kullanılarak TlGa1-xInxTe2 alaşımlarının yapısal ve elektronik özellikleri incelendi. TlGa1xInxTe2 (x=0.25, 0.50, 0.75) alaşımları, TlInTe2 ve TlGaTe2 alaşımları gibi tetragonal yapıya sahiptir. Alaşımların Kristal yapıları P1 (hesaplamalardan, birim hücre içerisindeki In konsantrasyonunun artışı ile örgü parametresi a ve birim hücre hacminin arttığı tespit edildi. Incelenen alaşımların, elektronik band yapı ve durum yoğunluğu hesaplamalarından, yarıiletken özellik sergilediğini bulundu. Ayrıca, alaşımların yasak band enerjisinin, x konsantrasyonuna bağlı olarak değiştiği tespit edildi. Hesaplanan yasak band enerjileri, alaşımların dar band aralıklı yarıiletken olduğunu göstermektedir. Bu çalışmanın bulguları dörtlü TlGa1-xInxTe2 (x=0.25, 0.50, 0.75) alaşımları ile ilgilenen araştırmacılar için iyi bir referans çalışma olacaktır

TlGa1-xInxTe2 (x=0.00, 0.25, 0.50, 0.75) Alaşımlarının Yapısal ve Elektronik Özellikleri

In this study, the structural and electronic properties of TlGa1-xInxTe2 alloys have been investigated using the full potential linearized augmented plane wave (FP-LAPW) method within the density functional theory (DFT). The TlGa1-xInxTe2 (x=0.25, 0.50, 0.75) alloys have tetragonal structure as in TlInTe2 and TlGaTe2 alloys. We create the crystal structure of these alloys using the P1 ( ##) space group. We found that the value of the lattice parameter a and volume of unit cell increases with increasing In concentrations. These alloys have characteristics of semiconductors. Moreover, we show that the band gap energy is dependent on the alloy composition index x. The calculated band gap energies indicate that all the studied alloys here are characterized by narrow band-gap semiconductors. The finding of this study motivates further future studies for concerning quaternary TlGa1-xInxTe2 for x=0.25, 0.50 and 0.75 alloys

___

  • [1] M. Isik and N. M. Gasanly, Interband critical points in TlGaxIn1-xS2 layered mixed crystals 0 ≤ � ≤ 1 , Journal of Alloys and Compounds, vol. 581, December 2013, pp. 542–546.
  • [2] A. Kato, M. Nishigaki, N. Mamedov, M. Yamazaki, S. Abdullayeva, E. Kerimova, H. Uchiki, and S. Iida, Optical properties and photo-induced memory effect related with structural phase transition in TlGaS2, Journal of Physics and Chemistry of Solids, vol. 64, no.2, September 2003, pp. 1713–1716.
  • [3] B. Abay, H. S. Güder, H. Efeoğlu, and Y. K. Yoğurtçu, Urbach-Martienssen Tails in the Absorption Spectra of Layered Ternary Semiconductor TlGaS2, Phys. stat. sol. (b), vol. 227, June 2001, pp. 469- 476.
  • [4] K. R. Allakhverdiev, T. G. Mammadov, R. A. Suleymanov, and N. Z. Gasanov, Deformation effects in electronic spectra of the layered semiconductors TlGaS2, TlGaSe2 and TlInS2, J. Phys.: Condens. Matter, vol. 15, February 2003, pp. 1291–1298.
  • [5] M. Isik and N. M. Gasanly, Trapping centers and their distribution in Tl2Ga2Se3S layered single crystals, Journal of Physics and Chemistry of Solids, vol. 70, June 2009, pp. 1048–1053.
  • [6] R. H. Al Orainy, Charge transport properties of Tl2GaInSe4 prepared by Bridgman technique, Superlattices and Microstructures, vol. 65, January 2014, pp. 177–183.
  • [7] A. F. Qasrawi and N. M. Gasanly, Mixed conduction and anisotropic single oscillator parameters in low dimensional TlInSe2 crystals, Materials Chemistry and Physics, vol. 141, August 2013, pp. 63-68.
  • [8] B. Abay, B. Gürbulak, M. Yıldırım, H. Efeoğlu, Y. K. Yoğurtçu, Electrothermal Investigation of the Switching Phenomena in p-Type TlInSe2 Single Crystals, Phys. stat. sol. (a), vol. 153, 1996, pp. 145- 151.
  • [9] A. F. Qasrawi and N. M. Gasanly, Electrical conductivity and Hall mobility in p-type TlGaSe2 crystals, Materials Research Bulletin, vol. 39, July 2004, pp. 1353–1359.
  • [10] O. Watzke, T. Schneider, and W. Martienssen, Crisis induced intermittency in the electrical conductivity of TlInTe2, Chaos Solitons and Fractals, vol. 11, June 2000, pp. 1163-1170.
  • [11] B. Abay, B. Gürbulak, M. Yıldırım, H. Efeoğlu, S. Tüzemen, and Y.K Yoğurtçu, Electrothermal Investigation of the Switching Effect in p-Type TIInSe2, TIInTe2, and TIGaTe2 Chain Chalcogenide Semiconductors, Journal of Electronic Materials, vol. 25, no. 7, 1996, pp. 1054-1059.
  • [12] M. M. Asadov, S. N. Mustafaeva, A. N. Mamedov, and D. B. Tagiyev, Effect of Composition on the Properties of (TlInSe2)1-x(TlGaTe2)x Solid Solutions, Inorganic Materials, vol. 51, no. 12, 2015, pp. 1232–1236.
  • [13] M. Petersen, F. Wagner, L. Hufnagel, M. Scheffler, and P. Blaha, K. Schwarz, Improving the efficiency of FP-LAPW calculations, Computer Physics Communications, vol. 126, April 2000, pp. 294–309.
  • [14] K. Schwarz, DFT calculations of solids with LAPW and WIEN2k, Journal of Solid State Chemistry, vol. 176, December 2003, pp. 319–328.
  • [15] K. Schwarz, P. Blaha, and G. K. H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences, Computer Physics Communications, vol. 147, August 2002, pp. 71–76.
  • [16] K. Schwarz and P. Blaha, Solid state calculations using WIEN2k, Computational Materials Science, vol. 28, October 2003, pp. 259–273.
  • [17] K. Schwarz, P. Blaha, and S. B. Trickey, Electronic structure of solids with WIEN2k, Molecular Physics, vol. 108, no. 21-23, December 2010, pp. 3147-3166.
  • [18] J. Banys, F. R. Wondre, and G. Guseinov, Powder Diffraction Study of TlGaTe2, TlInTe2 and TlInSe2, Materials Letters, vol. 9, no.7-8, April 1990, pp. 269-274.
  • [19] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol. 77, no.18, October 1996, pp. 3865-3868.
  • [20] F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchangecorrelation potential, Physical Review Letters, vol. 102, June 2009, pp. 226401(1-4).
  • [21] F. D. Murnaghan, The compressibility of media under extreme pressures, Proceedings of the National Academy of Sciences of the United States of America, vol. 30(9), July 1944, pp. 244-247.
  • [22] T. Ben Nasr, H. Ben Abdallah, and R. Bennaceur, First-principles study of the electronic and the optical properties of In6Se7 compound, Physica B, vol. 405, August 2010, pp. 3427–3432.