Termal Buharlaştırma Yöntemiyle Hazırlanan Ga Katkılı CuInSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi

Özet: Bu çalışmada, güneş hücrelerinde soğurucu malzeme olarak kullanılan CuInSe2 ince filmler 10-4 Pa vakum altında, yapıyı oluşturan malzemelerin aynı anda termal buharlaştırılma yöntemi ile 400 °C sabit alttaş sıcaklığında cam altlıklar üzerine biriktirilmiştir. Tavlama sıcaklığı ve tavlama yönteminin, filmler üzerine etkisini belirlemek için 3 grup ince film üretilmiş ve bunlardan bir grup referans olarak ayrılmıştır. İkinci grup ince filmler vakum altında 400 °C – 700 °C arasındaki sıcaklıklarda tavlanmıştır. Üçüncü grup ince filmler yapısal değişimlerini incelemek için 500 °C’de azot gazı ortamında selenyum parçacıklarıyla beraber tavlanmıştır (selenizasyon). Vakum altında tavlama işleminde sıcaklık ile kristalleşme arasında doğrudan bir ilişki olmadığı görülmüştür. Azot ortamında yapılan selenizasyon işlemi ise CIS ’in kristalleşmesini iyileştirmiş fakat azot gazının safsızlığından kaynaklanan In2O3 pikleri de oluşmuştur. Yapısal karakterizasyon için SEM, EDS, AFM, XRD sistemleri kullanılmıştır. Farklı ortamlarda tavlamanın etkileri araştırılmış ve Ga katkılı CIS ince filmler için üretim parametreleri belirlenmeye çalışılmıştır. Abstract: In this study, the CuInSe2 thin films, which are used as an absorbing material in solar cells was deposited on glass substrate at a constant substrate temperature of 400 °C by means of thermal co-evaporation method, under 10-4 Pa vacuum pressure. Three groups of thin films were produced to determine the effect of annealing temperature and annealing method on the films, and a group of them were separated as reference. Second group thin films were annealed between 400 °C and 700 °C temperature under vacuum. Third group of thin films were annealed at 500 °C together with the selenium particles in nitrogen gas atmosphere (selenization) to investigate the structural change of the films. It has been found that there is no direct relationship between temperature and crystallization during vacuum annealing. The selenization process in the nitrogen environment improved the crystallization of CIS but the formation of In2O3 peaks originating from the impurity of the nitrogen gas has been seen. SEM, EDS, AFM, XRD systems were used for structural characterization. The effects of annealing in different environments have been investigated and production parameters have been tried to be determined for the Ga doped CIS thin films.

___

  • T. Wada, N. Kohara, S. Nishiwaki, and T. Negami, “Characterization of the Cu Ž In , Ga . Se 2 r Mo interface in CIGS solar cells,” pp. 118–122, 2001.
  • M. Kemell, M. Ritala, and M. Leskelä, “Thin Film Deposition Methods for CuInSe 2 Solar Cells,” Crit. Rev. Solid State Mater. Sci., vol. 30, no. 1, pp. 1–31, 2005.
  • J. S. Ward, K. Ramanathan, F. S. Hasoon, T. J. Coutts, J. Keane, M. a. Contreras, T. Moriarty, and R. Noufi, “A 21??5% efficient Cu(In,Ga)Se2 thin-film concentrator solar cell,” Prog. Photovoltaics Res. Appl., vol. 10, no. 1, pp. 41–46, 2002.
  • P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu ( In , Ga ) Se 2 solar cells with efficiencies up to 22 . 6 %,” vol. 4, pp. 1–4, 2016.
  • L. M. Mansfield, R. L. Garris, K. D. Counts, J. R. Sites, C. P. Thompson, W. N. Shafarman, and K. Ramanathan, “Comparison of CIGS Solar Cells Made With Different Structures and Fabrication Techniques,” pp. 1–8, 2016.
  • H.-H. Sheu, Y.-T. Hsu, S.-Y. Jian, and S.-C. Liang, “The effect of Cu concentration in the photovoltaic efficiency of CIGS solar cells prepared by co-evaporation technique,” Vacuum, vol. 131, pp. 278–284, 2016.
  • G. Y. Kim, J. Yang, T. Thi, T. Nguyen, S. Yoon, J. Nam, D. Lee, D. Kim, M. Kwon, C. Jeon, Y. Kim, S. Lee, M. Kim, and W. Jo, “High photo-conversion ef fi ciency in double-graded Cu ( In , Ga )( S , Se ) 2 thin fi lm solar cells with two-step sulfurization post-treatment,” 2016.
  • S. Ishizuka, K. Sakurai, a Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, and S. Niki, “Fabrication of wide-gap Cu(ln(1-x)Ga(x))Se-2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness,” Sol. Energy Mater. Sol. Cells, vol. 87, no. 1–4, pp. 541–548, 2005.
  • R. Wuerz, a Eicke, M. Frankenfeld, F. Kessler, M. Powalla, P. Rogin, and O. Yazdani-Assl, “CIGS thin-film solar cells on steel substrates,” Thin Solid Films, vol. 517, no. 7, pp. 2415–2418, 2009.
  • J. Wi, D. Cho, W. Lee, W. Seok, and Y. Chung, “Effects of Ga concentration in Cu ( In , Ga ) Se 2 thin film solar cells with a sputtered-Zn ( O , S ) buffer layer,” Sol. Energy, 2016.
  • S. T. M. R. Ossnagel, A. J. Bard, H. Kuhn, and N. Plate, No Title. .
  • A. Katerski, A. Mere, V. Kazlauskiene, J. Miskinis, A. Saar, L. Matisen, A. Kikas, and M. Krunks, “Surface analysis of spray deposited copper indium disulfide films,” Thin Solid Films, vol. 516, no. 20, pp. 7110–7115, 2008.
  • D. Lee, S. Park, and J. Kim, “Structural analysis of CIGS fi lm prepared by chemical spray deposition,” Curr. Appl. Phys., vol. 11, no. 1, pp. S88–S92, 2011.
  • F. Long, W. Wang, J. Du, and Z. Zou, “CIS(CIGS) thin films prepared for solar cells by one-step electrodeposition in alcohol solution,” J. Phys. Conf. Ser., vol. 152, p. 12074, 2009.
  • I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, and C. L. Perkins, “19 Á 9 % -efficient ZnO / CdS / CuInGaSe 2 Solar Cell with 81 Á 2 % Fill Factor z,” no. February, pp. 235–239, 2008.
  • J. Piekoszewski, J. J. Loferski, R. Beaulieu, J. Beall, B. Roessler and J. Shewchun, “RF-SPUTTERED CulnSe 2 THIN FILMS ,” vol. 2, pp. 363–372, 1980.
  • P. A. Jones, A. D. Jackson, P. D. Lickiss, R. D. Pilkington, and R. D. Tomlinson, “Letter The plasma enhanced chemical vapour deposition of CuInSe2,” vol. 238, pp. 4–7, 1994.
  • B. Jusserand and F. Mollot, “Long range gallium segregation in the AlAs layers of GaAs/AlAs superlattices,” Appl. Phys. Lett., vol. 61, no. 4, pp. 423–425, 1992.