Klinik Lineer Hızlandırıcı Kullanılarak99Mo Radyoizotopunun Yarı-Ömür Tayini

Radyoizotopların yarı-ömürlerinin belirlenmesi, çekirdek yapılarının aydınlatılmasında önemli bir yere sahiptir. İlk defa bir klinik lineer hızlandırıcı kullanılarak 100Mo(γ,n)99Mo fotonükleer reaksiyonunun gerçekleştirildiği bu çalışmayla üretilen 99Mo radyoizotopunun yarı-ömrü belirlenmiştir. Yüksek saflıkta Germanyum dedektöre sahip bir gama spektrometresi vasıtasıyla elde edilen 99Mo radyoizotopuna ait spektrum, MAESTRO, gf3 ve ROOT yazılımları kullanılarak analiz edilmiştir. Elde edilen deneysel verilerle hesaplanan yarı-ömür değerinin (64,44saat) daha önceki araştırma sonuçlarıyla ve uluslararası Nükleer Veri Tabanı, NuDat’taki güncel yarı-ömür değeriyle (65,98 saat) uyumlu olduğu bulunmuştur. Sonuç olarak, fotonükleer reaksiyon mekanizmasıyla incelenebilecek orta ağırlıktaki radyoizotopların yeterli çıkış enerjisine sahip bir c-linak kullanılarak çalışılabileceği gösterilmiştir.

Determination of the Half-Life of Molybdenum-99 Radioisotope by Using Clinical Linear Accelerator

Determination of the half-lives of the radioisotopes has an importance for understanding about the nuclear structure. In this work, 100Mo(γ,n)99Mo photonuclear reaction was studied for the first time by using a clinical linear accelerator and the half-life of 99Mo radioisotope was determined. The spectrum of 99Mo radioisotope was obtained by using a gamma spectrometer with a high purity Germanium detector. Then, the spectrum was analyzed by using MAESTRO, gf3 and ROOTsoftware. It was found that, the calculated half-life value from the experimental data (64.44 h) agreed with the results of the previous studies and the reported half-life value in Nuclear Data Database, NuDat(65.98 h). As a conclusion, it has been shown that, the photonuclear reaction mechanism for medium weight radioisotopes can be studied by using a c-linac, which has suitable end point energy

___

  • Oka Y., Kato T., Nomura K., Saito T., 1967. Gamma-ray spectrometric study of the photo activation products with 20 MeV bremsstrahlung, Journal of Nuclear Science and Technology, 4 (7): 346-352.
  • Meija J., Coplen T.B., Berglund M., Brand W.A., De Bievre P., Gröning M., Prohaska, T., 2016. Atomic weights of the elements (2013 IUPAC Technical Report), Pure and Applied Chemistry, 88 (3): 265-291.
  • Lide D.R., 1994. CRC handbook of chemistry and physics, Chemical Rubber Publishing Company, USA, p. 2531.
  • Lindemann A., Blumm J., 2009.Measurement of the thermophysical properties of pure molybdenum, In:17th PlanseeSeminar, Vol.3, Austria.
  • Audi G., Bersillon O., Blachot J., Wapstra A. H., 2003. The NUBASE evaluation of nuclear and decay properties,Nuclear Physics A,729: 3-128.
  • Roberts A. D., Geddes C. G. R., Matlis N., Nakamura K., O'Neil J. P., Shaw B. H., Steinke S., van Tilborg J., Leemans W. P., 2015. Measured bremsstrahlung photonuclear production of 99Mo (99mTc) with 34 MeV to 1.7 GeV electrons, Applied Radiation and Isotopes, 96: 122–128.
  • Sabel'nikov A. V., Dmitriev S. N., Maslov O. D., 2000. Possibilities of 99Mo (99mTc) and 237U production in photonuclear reactions in compact accelerator of electrons MT-25, Radiochemistry and Nuclear Chemistry, 252 (3): 280.
  • Sabel’nikov A.V., Maslov O.D., Molokanova L.G., Gustova M.V., Dmitriev S.N., 2006. Preparation of 99Mo and 99mTc by 100Mo (γ, n) photonuclear reaction on an electron accelerator, MT-25 microtron, Radiochemistry, 48 (2): 191-194.
  • Ishkhanov B.S., 2014. Photonuclear reactions on molybdenum isotopes, Physics of Atomic Nuclei, 77 (11): 1362-1370.
  • Dovbnya A.N., 2012. An increase of 99Mo yield under mixed γ, n-irradiation of target from natural molybdenum, Isotopes and Radiation Sources, 45 (26): 151-154.
  • Lindsky L.M., Lanza R., 1998. Method of producing molybdenum-99, Patent number: 5784423.
  • Belic D., Besserer J., Arlandini C., de Boer J., Carroll J. J., Enders J., Hartmann T., Kappeler F., Kaiser H., Kneissl U., Loewe M., Maser H., Mohr P., von Neumann-Cosel P., Nord A., Pitz H. H., Richter A., Schumann M., Volz S., Zilges A., 2001. The new photoactivation facility at the 4.3 MV Stuttgart Dynamitron: Setup, performance, and first applications, Nuclear Instruments and Methods in Physics Research Section A, 463 (1-2): 26-41.
  • Masumoto K., Segebade C., 2006. Photon activation analysis, John Wiley & Sons Ltd., New York.
  • Danon Y., Block R., Harvey J., 2010. Production of Mo-99 using 30 MeV electrons and a Mo-100 target, In: Transactions of the American Nuclear Society and Embedded Topical Meeting Isotopes for Medicine and Industry, Vol. 103, Las Vegas, pp. 1–1190.
  • Starovoitova V.N., Tchelidze L., Wells D.P., 2014. Production of medical radioisotopes with linear accelerators, Applied Radiation and Isotopes, 85: 39-44.
  • Eke C., Boztosun I., Dapo H., Segebade C., Bayram E., 2016. Determination of gamma-ray energies and half lives of platinum radio-ısotopes by photon activation using a medical electron linear accelerator: A feasibility study, Journal of Radioanalytical and Nuclear Chemistry, 309: 79-83.
  • Mohr P., Brieger S., Witucki G., Maetz M., 2007. Photoactivation at a clinical LINAC: The 197Au(γ,n)196Au reaction slightly above threshold, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 580 (3): 1201-1208.
  • Boztosun I., Dapo H., Özmen S.F., Çeçen Y., Karakoç M., Çoban A., Cesur A., Caner T., Bayram E., Keller G. B., Küçük B., Güvendi A., Derman M., Kaya D., 2014. The results of the first photonuclear reaction performed in Turkey: The zinc example, Turkish Journal of Phsics, 38: 1-9.
  • Boztosun I., Dapo H., Karakoç M., Özmen S.F., Çeçen Y., Çoban A., Caner T., Bayram E., Saito T. R., Akdoğan T., Bozkurt V., Kuçuk Y., Kaya D., Narakeh M. N., 2015. Photonuclear reactions with zinc: A case for clinical linacs, The European Physical Journal Plus, 130: 185
  • Dulger F., Akkoyun S., Bayram T., Dapo H., Boztosun I., 2015. Energy levels and half-lives of gallium isotopes obtained by photo-nuclear reaction,Journal of Physics: Conference Series, 590: 012051.
  • Aygun M., Cesur A., Dogru M., Boztosun I., Dapo H., Kanarya M., Kuluozturk M. F., Bal S. S., Karatepe S., 2016. Using a clinical linac to determine the energy levels of 92mNb via the photonuclear reaction, Applied Radiation and Isotopes,115: 97–99.
  • Anbar A.D., Knab K.A., Barling J., 2001. Precise determination of mass-dependent variations in the isotopic composition of molybdenum using MC-ICPMS, Analytical Chemistry, 73(7): 1425-1431.
  • Elekta, Elekta Digital Accelerator, 2003. General Introduction Page. https://www. elekta.com/services/education-and-training.html Erişim Tarihi: 15.05.2014.
  • Ortec, 2010. Manual. http://www.ortec-online.com/Service-Support/Library/Manuals.aspx (Erişim Tarihi: 20.12.2014).
  • Maestro-32, 2012. Guide. http://www.ortec-online.com/download/A65-B32-MAESTRO-32-Emulation-Software.pdf (Erişim Tarihi: 20.12.2014).
  • Radford DC, 2000. Notes On The Use Of The Gf3.http://radware.phy.ornl.gov/gf3/gf3.html (Erişim Tarihi: 15.10.2014).
  • Brun R., Rademakers F., 1997. ROOT-An object oriented data analysis framework,Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 389 (1): 81-86.
  • Seiler J.A., 1947. Early drama, art, and music monograph series, Vol. 17 Report ANL-4000, Argonne National Laboratory, p. 119.
  • Chechev V.P., Egorov A.G., 2000. Search for an optimum approach to the evaluation of data of varying consistency: half-live evaluations for 3H, 35S, 55Fe, 99Mo and 111In, Applied Radiation and Isotopes, 52(3): 601-608.
  • Wright H.W., Wyatt E.I., Reynolds S.A., Lyon W.S., Handley, T.H., 1957. Half-lives of radionuclides-I, Nuclear Science and Engineering, 2 (4): 427-430.
  • Gunn S.R., Hicks H.G., Levy H.B., Stevenson P.C., 1957. Calorimetric determination of the average total kinetic energy of fragments from fission of U235, Physical Review, 107(6): 1642.
  • Protopopov A.N., Tolmachev G.M., Ushatskii V.N., Venediktova R.V., Krisiuk I.S., Rodionova L. P., Iakovleva G.V., 1958. Distribution of fragments by mass in fission of U235. U238 and Pu239 by neutrons of 14.6 MeV energy, The Soviet Journal of Atomic Energy, 5(2): 963-968.
  • Newman R.D., 1961. Half-lives of I-132, Mg-28, Tc-99m, Mo-99 and Al-28, In: Private Communication, Pennsylvania.
  • Martin M.J., Blichert-Toft P.H., 1970. Radioactive atoms: Auger-electron, α-, β, γ-, and X-ray data, Atomic Data and Nuclear Data Tables,8(1): 1-198.
  • Crowther P., Eldridge J.S., 1965. Decay of 99Mo - 99mTc, Nuclear Physics,66(2): 472-480.
  • Baldwin M.N., 1967. Molybdenum-99 half-life determination, Nuclear Science and Engineering, 30 (1): 144.
  • Reynolds S.A., Emery J.F., Wyatt E.I., 1968. Half-lives of radionuclides-III, Nuclear Science and Engineering, 32 (1): 46-48.
  • Baba S., Baba H., Natsume H., 1971. Half-lives of some fission product nuclides, Journal of Inorganic and Nuclear Chemistry, 33 (2): 589-595.
  • Emery J.F., Reynolds S.A., Wyatt E.I., Gleason G.I., 1972. Half-lives of radionuclides-IV, Nuclear Science and Engineering, 48 (3): 319-323.
  • Dickens J.K., 1979. Half life of132Te, Radiochemical and Radioanalytical Letters, 39 (2): 107-119.
  • Houtermans H., Milosevic O., Reichel F., 1980. Half-lives of 35 radionuclides, The International Journal of Applied Radiation and Isotopes, 31(3): 153-154.
  • Hoppes D.D., Hutchinson J.M.R., Schima F. J., Unterweger M.P., 1982. Nuclear data for X-or gamma-ray spectrometer efficiency calibrations, In: NBS Special Publication, 626: 85.
  • Walz K.F., Debertin K., Schrader H., 1983. Half-life measurements at the PTB,The International Journal of Applied Radiation and Isotopes,34 (8): 1191-1199.
  • Gray P.W., Mac Mahon T.D., Rajput M.U., 1990. Objective data evaluation procedures, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 286 (3): 569-575.