Bükülmüş Grafenin Elektronik Özellikleri

Bu çalışmada WIEN2k bilgisayar programı kullanılarak ideal ve bükülmüş grafenin elektron yoğunluğu, durum yoğunluğu ve band yapısı elde edilmiştir. Burada ideal ve bükülmüş grafenin 2x2x1, 2x3x1 ve 3x2x1 boyutları çalışılmıştır. Her bir nanoşerit için 100, 200, 300 ve 500 k noktası kullanılmıştır. Elektronik durum yoğunluğu ve band yapıları, kristalin yarıiletken özellik sergilediğini göstermektedir. Yarıiletken özellik gösteren ideal ve ideal olmayan kristallerin yasak band aralığı, ideale göre ideal olmayan (bükülmüş) kristalde daha büyüktür. İdeal grafende gözlenen sıfıra çok yakın yasak band aralığı malzemenin metal özelliğine yatkınlığını ortaya koymaktadır. Ancak, genel anlamda, yarıiletken özelliğinin dikkat çektiğini gördüğümüz bükülmüş grafenin yasak band aralığı yaklaşık 0.7-1.9 eV aralığında değer almıştır.

Electronic Properties of Buckled Graphene

In this study, the electron density, state density and band structure of the ideal and buckled graphenes have been obtained via WIEN2k software. This study involves 2x2x1, 2x3x1 and 3x2x1 dimensions of ideal and buckled graphenes. For each nanoribbon 100, 200, 300 and 500 k points have been used. Electronic state density and band structures demonstrate the fact that the crystal displays semiconductive properties. The forbidden band gap of ideal and non-ideal crystals displaying semiconductive behaviors is bigger in non-ideal (buckled) crystal than the ideal one. The forbidden band gap observed in ideal grapheme which is quite close to zero value proves the tendency of the material towards the metal properties. However, in general terms the forbidden band gap of buckled graphene which is distinctive with its semiconductive behavior is approximately between 0.7 and 1.9 eV.

___

  • Liu D.,Wu L., Liu Q., Zhou r., Xie A., Chen., Wu M., Zeng L., 2016. Plasmon switching effect based on grapheme nanoribbon pair arrays, Optics Communications, 377: 74–82.
  • Hong X.D., Liang D., Wu P.Z., Zheng H.R., 2016. Facile synthesis and enhanced field emission properties of Cu nanoparticles decorated graphene-based emitters, Diamond & Related Materials, 69: 61–67.
  • Ganji M.D., Tajbakhsh M., Kariminasab M., Alinezhad H., 2016. Tuning the LUMO level of organic photovoltaic solar cells by conjugately fusing graphene flake: A DFT-B3LYPstudy, Physica E, 81: 108–115.
  • Das R., Dhar N., Bandyopadhyay A., Jana D., 2016. Size dependent magnetic and optical properties in diamond shaped grapheme quantum dots: A DFT study, Journal of Physics and Chemistry of Solids, 99: 34–42.
  • Katsnelson K.I., 2007. Graphane: carbon in two dimensions, Materials Today, 10:(1-2), 20-27.
  • https://arxiv.org/pdf/0704.1793v1.pdf (Erişim Tarihi: 30.09.2016).
  • Schwarz K., Blaha P., Madsen G.K.H., 2002. Electronic structure calculations of solids using the WIEN2k package for material sciences, Computer Physics Communications, 147: 71–76.
  • Schwarz K., Blaha P., 2003. Solid state calculations using WIEN2k, Computational Materials Science, 28: 259–273.
  • Schwarz K., Blaha P., Trickey S.B., 2010. Electronic structure of solids with WIEN2k, Molecular Physics, 108: 3147-3166.
  • Perdew J.P., Burke K., Ernzerhof M., 1996. Generalized gradient approximation made simple, Physical Review Letters, 77: 3865-3868.
  • Sofo J.O., Chaudhari A.S., Barber G.D., 2007. Graphane: A two-dimensional hydrocarbon, Physical Review B, 75: 153401(1-4).