Global Reaktiflik Parametreleri ve Bazı Spektral Sonuçlarla Polipropilenin Zincir Uzunluğuna Bağlı Kimyasal Reaktifliği

Özet: Bu çalışmada polipropilenin zincir uzunluğuna (n) bağlı olarak kimyasal reaktifliği ya da kararlılığı, global reaktiflik parametreleri ve bazı spektral sonuçlar yardımıyla araştırıldı. Bu maksatla, molekülün optimizasyonları (n=1-12) B3LYP/6–311++G(d,p) seviyesinde yapıldıktan sonra global reaktiflik parametreleri yani; EHOMO, ELUMO, ELUMO - EHOMO enerji farkı, iyonlaşma enerjisi, elektron ilgisi, kimyasal potansiyel, elektronegatiflik, sertlik, yumuşaklık, elektrofilisiti ve nükleofilisiti indeks değerleri ve spektral sonuçlar yani; IR, 1H NMR ve 13C NMR spektrumları hesaplanarak yorumlandı. Molekülün reaktifliğinin zincir uzunluğuna bağlı olarak artığı fakat n=10’dan sonra hemen hemen sabit kaldığı görüldü. Bulunmuş bu zincir uzunluğunun bu molekülün kimyasal özelliklerinin teorik olarak araştırmada yeterli olduğu kanaatine varıldı. Abstract: In the present study, the chemical reactivity or stability of polypropylene depending on the number of chain (n) were investigated via global reactivity parameters and some spectral results. In this context, after the geometry optimizations of the molecule (n=1-12) were carried out at B3LYP/6–311++G(d,p) level, the global reactivity parameters such as; EHOMO, ELUMO, energy gap between ELUMO and EHOMO, ionization enerjisi, electron affinity, chemical potential, electronegativity, hardness, softness, electrophilicity index and nucleophilicity index, and the spectral results such as; IR, 1H NMR and 13C NMR have been calculated and commented. It was seen that its reactivity increases with increasing chain number but, become nearly constant after n=10. We have concluded this found chain number is enough to investigate its chemical properties as theoretical.

___

  • [1] A. Heeger, “Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials”, Reviews of Modern Physics, vol. 73 (3), pp. 681-700, 2001.
  • [2] T.A. Skotheim, Handbook of Conducting Polymers, Marcel Dekker, New York, 1986.
  • [3] T.A. Skotheim, R.L. Elsenbaumer, and J.R. Reynolds, Handbook of Conducting Polymers, 2nd ed. Marcel Dekker, New York, 1997.
  • [4] T.A. Skotheim and J.R. Reynolds, Handbook of Conducting Polymers, 3nd ed. FL: CRC Press, Boca Raton, 2007.
  • [5] Polypropylene Plastic Materials & Fibers by Porex. Available: www.porex.com.
  • [6] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuj, M. Caricato, X. Li, H.P. Hratchian, A.F. Iamaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery jr, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Lyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Gaussian Inc., Wallingford CT, 2009.
  • [7] A. Frish, A.B. Nielsen, and A.J. Holder, Gauss view user manual, Gaussian Inc., Pittsburg, 2001.
  • [8] H. Chermette, “Chemical reactivity indexes in density functional theory,” J. Comput. Chem., vol. 20, pp. 129-154, 1999.
  • [9] R.G. Parr and P.K. Chattaraj, “Principle of maximum hardness,” J. Am. Chem. Soc., vol. 113, pp. 1854-1855, 1991.
  • [10] T. Koopmans, “Ordering of wave functions and eigen-energies to the individual electrons of an atom,” Physica, vol. 1, pp. 104-113, 1933.
  • [11] N. Islam and D.C. Ghosh, “A new algorithm for the evaluation of the global hardness of polyatomic molecules,” Int. J. Quant. Chem., vol. 109, pp. 917-931, 2011.
  • [12] W. Yang and R.G. Parr, “Hardness, softness and the Fukui function in the electronic theory of metals and catalysis,” Proc. Natl. Acad. Sci., vol. 82, pp. 6723-6726, 1985.
  • [13] R.G. Parr, L. Sventpaly, S. Liu, “Electrophilicity index,” J. Am. Chem. Soc., vol. 121(9), pp. 1922-1924, 1999.
  • [14] P.K. Chattaraj, U. Sarkar, and D.R. Roy, “Electrophilicity Index,” Chem. Rev., vol. 106(6), pp. 2065-2091, 2006.
  • [15] B. Wang, H.-R. Zhang, C. Huang, L. Xiong, J. Luo, and Chen X.-de, “Study on non-isothermal crystallization behavior of isotactic polypropylene/bacterial cellulose composites,” RSC Adv., vol. 7, pp. 42113-42122, 2017.
  • [16] C. Firme, A.V. Grafor, and M.L. Dias, “Ethylene and propylene polymerization with bis(indenyl)zirconium/Mao catalytic systems modified by sterically demanding alcohols,” J. Poly. Scien. Part A: Poly. Chem., vol. 43(18), pp. 4248-4259, 2005.
  • [17] B. Vincenzo and R. Cipullo, “Microstructure of polypropylene,” Prog. Polym. Sci., vol. 26, pp. 443-533, 2001.
  • [18] A.A. Asiri, C.C. Ersanli, O. Sahin, M.N. Arshad, and S.A. Hameed, “Molecular structure, spectroscopic and quantum chemical studies of 1׳,3׳,3׳-trimethylspiro[benzo[f]chromene-3,2׳-indoline,” J. Mol. Struct. vol. 1111, pp. 108-117, 2016.
  • [19] T. Hahn, W. Suen, S. Kang, S.L. Hsu, H.D. Stidham, and A.R. Siedle, “An analysis of the Raman spectrum of syndiotactic polypropylene. 1. Conformational defects,” Polymer, vol. 42, pp. 5813-5822, 2001.
  • [20] F.P.T.J. van der Burgt, Crystallization of isotactic polypropylene: the influence of stereo-defects, Eindhoven: Technische Universiteit Eindhoven, 2002.
  • [21] R.T. Sanderson, “Principle of electronegativity. Part I. General nature,” J. Chem. Educ. Soc., vol. 65(2), pp. 112-118, 1988.
  • [22] T. Chakraborty, K. Gazi, and D.C. Ghosh, “Computation of the atomic radii through the conjoint action of the effective nuclear charge and the ionization energy,” Mol. Phys., vol. 108(16), pp. 2081-2092, 2010.