ZnO Filmlerinin Optik, Elektrik ve Yüzey Özellikleri Üzerine Tavlama İşleminin Etkileri

ZnO filmleri 3005 ï‚°C sıcaklıktaki cam tabanlar üzerine ultrasonik kimyasal püskürtme tekniği kullanılarak hazırlanmıştır. Depolanan filmler çeşitli sıcaklıklarda (350, 450, 550 ï‚°C) 2 saat süre ile tavlanmıştır. Tavlanmış ve tavlanmamış ZnO filmlerinin elektrik, optik ve yüzey özellikleri incelenmiştir. Tüm filmlerin optik geçirgenlik ve absorbans spektrumları UV-VIS Spektrofotometre ve optik bant aralıkları da optik metot kullanılarak belirlenmiştir. Ayrıca, ZnO'in görünür emisyon pikleri ve nokta kusurları da fotolüminesans spektrumu kullanılarak belirlenmiştir. Kalınlık, kırılma indisi ve sönüm katsayısı değerleri spektroskopik elipsometre tekniği ile elde edilmiştir. Elektrik ve yüzey özellikleri sırasıyla dört uç tekniği ve atomik kuvvet mikroskobu ile incelenmiştir. Elde edilen sonuçlara göre ZnO filmlerinin optik, elektrik ve yüzey özellikleri üzerine tavlama sıcaklığının etkisi araştırılmıştır.

Effect of Annealing Process on Optical, Electrical and Surface Properties of ZnO films

ZnO films were prepared on glass at 3005 C substrate temperature by ultrasonic spray pyrolysis. The deposited films were annealed at various temperatures (350, 450, 550 C) for 2 hours. Annealed and unannealed of ZnO films were characterized by studying their optical, electrical and surface properties. The optical transmittance and absorbance spectra of all films were examined by UV-VIS Spectrophotometer and the optical band gap was found using optic method. Besides, visible emission peaks and native point defects of ZnO films were determinate using photoluminescence spectra. Thickness, refractive index and extinction coefficient values were obtained with spectroscopic ellipsometry technique. The electrical and surface properties of the films were characterized four point technique and atomic force microscopy, respectively. According to result, the effects of annealing temperature on the optical, electrical and surface properties of the ZnO films are discussed

___

  • Rozati, S.M., 2006. The effect of substrate temperature on the structure of tin oxide thin films obtained by spray pyrolysis method. Materials
  • Characterization. 57 (3), 150-153. Rozati, S.M., Ganj, T., 2004. Transparent conductive
  • Sn-doped indium oxide thin films deposited by spray pyrolysis technique. Renewable Energy 29 (10), 1671-1676.
  • Martins, R., Fortunato, E., Nunes, P., Ferreira, Marques, I., Bender, A.M., Katsarakis, N., Cimalla, V., Kiriakidis, G., 2004. Zinc oxide as an ozone sensor.
  • Journal of Applied Physics, 96(3), 1398-1408.
  • Ellmer, K., Mientus, R., 2008. Carrier transport in polycrystalline ITO and ZnO:Al II: The Influence of grain barriers and boundaries. Thin Solid Films, 516, 5829-5835.
  • Chopra, K.L., Major, S., Pandya, D.K., 1983.
  • Transparent conductors. Thin Solid Films, 102, 1. Dayan, N.J., Sainkar, S.R., Karekar, R.N., Aiyer, R.C., 1998Formulation and characterization of ZnO: Sb thick-film gas sensors. Thin Solid Films, 325 (1), 254- 258
  • Mitra, P., Chatterjee, A.P., Maiti, H.S., 1998. Chemical deposition of ZnO films for gas sensors. Journal of Materials Science. 9, 441.
  • Chen, C.S., Kuo, C.T., Wu, T.B., Lin, I.N., 1997.
  • Microstructures and electrical properties V2O5-based Multicomponent microwave sintering process. Journal of Applied Physics, 36, 1169. varistor prepared by
  • H.M., 1995. D.C. properties of ZnO thin films prepared by r.f. magnetron sputtering. Thin Solid Films, 270, 376-3
  • B.J. Lokhande, M.D. Uplane, 2000. Structural, optical and electrical studies on spray deposited highly oriented ZnO films. Applied Surface Science 167, 243.
  • T.K. Subramanyam, B. Srinivasulu Naidu, S. Uthanna, 19 Structure and Optical Properties of dc Reactive Magnetron Sputtered Zinc Oxide Films. Crystal Resreach and Technology, 34, 981. Martinez, M.A., Herrero, J.J., Gutierrez,M.J., 1994.
  • Properties of RF sputtered zinc oxide based thin films made from different targets. Solar Energy Material Solar Cells, 31, 489. Y. Qu, T.A. Gessert, J.J. Coutts, R. Noufi, 1994. Study of ion‐beam‐sputtered ZnO films as a function of deposition temperature. Journal of Vacuum Science Technology, 12, 1507.
  • T.Y. Ma, S.H. Kim, H.Y. Moon, G.C. Park, Y.J. Kim, K.W. Kim, Jpn., 1996. Substrate Temperature Dependence of ZnO Films Prepared by Ultrasonic Spray Pyrolysis.
  • Journal Applied Physics, 35, 6208.
  • Zang SB, Wei SH, Zunger A., 2001. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Physics Review B, 63, 075205–11.
  • Janotti A, Van de Walle CG., 2006. New insights into the role of native point defects in ZnO. Journal of Crystal Growth, 287, 58–65.
  • Mo CM, Li YH, Liu YS, Zhang Y, Zhang LD., 1998.
  • Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aero- gels. Journal of Applied Physics , 83, 4389–91.
  • Yao B, Shi H, Bi H, Zhang L., 200. Optical properties of ZnO loaded in mesoporous silica. Journal of Physics Condensed Matter, 12, 6265–70.
  • Wu XL, Siu GG, Fu CL, Ong HC., 2001.
  • Photoluminescence and cathodo- luminescence studies of stoichiometric and oxygen-deficient ZnO films. Applied Physics Letter,78:2285–7.
  • Sun YM. PhD thesis. University of Science and Technology of China. July 2000. Symbols T  A Eg  frequency (s-1) h n k Rq root mean square roughness (nm) Ra Rpv Zn O VO VZn Oi Zni OZn antisite oxygen Altsimgeler a q pv g O i interstitial