Yüksek Kirişler için TS500-2000 Kayma Dayanımı İlkelerinin Değerlendirilmesi

TS500-2000 yönetmeliği, tekil yüklü yüksek kirişlerde meydana gelen kemerlenme etkisini hesaba katmak için, daha gelişmiş modeller kullanmak yerine basit kayma dayanımı denklemlerinin kullanmasına izin verir. TS500'e göre, net açıklığı, faydalı yüksekliğinin 5 katından küçük olan hem dikey hem de yatay kayma donatısı içeren yüksek kirişlerin kayma dayanımı, her iki doğrultudaki kayma donatısının ve net açıklığın faydalı yüksekliğe olan oranın etkisini içeren basit bir kayma dayanımı denklemi ile bulunabilir. Bu çalışmada TS500-2000'deki kayma dayanımı denklemlerinin doğruluğu ve güvenliği değerlendirilmiştir. Bu amaçla, düşey ve yatay kayma donatısı içeren, basit mesnetli ve tekil yüklü betonarme derin kiriş deneylerinden oluşan ACI-DAfStb değerlendirme veritabanı kullanılmıştır. Elde edilen sonuçlara dayanarak, TS500-2000 kayma dayanımı denklemlerinin doğruluğunu geliştirmek için öneriler yapılmıştır.

Evaluation of TS500-2000 Shear Strength Provisions for Deep Beams

In order to account for the strut action in point loaded deep beams, TS500-2000 allows use of simple shear strength equations instead of more refined models. According to TS500, when the clear span-to-depth ratio, ln/d is less than 5, the shear strength of deep beams containing both vertical and horizontal shear reinforcement can be calculated by a simple expression which accounts for the effect of web reinforcements along with the clear span-to-depth ratio, ln/d. In this study, the accuracy and conservativeness of the shear strength equations for deep beams in the TS500-2000 are evaluated. ACI-DAfStb evaluation database of shear tests on point loaded simply supported reinforced concrete members with vertical and horizontal shear reinforcement, is used for this purpose. Based on the results obtained, recommendations are made to improve the accuracy of TS500-2000 sectional shear design equations.

___

  • [1] Vilar, M.M.S., Sartorato, M., Santana, H.B., Leite, M.R. 2018. Finite Elements Numerical Solution to Deep Beams Based on Layerwise Displacement Field. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40:477.
  • [2] Liu, J., Mihaylov, B. I. 2016. A comparative study of models for shear strength of reinforced concrete deep beams. Engineering Structures, 112, 81-89.
  • [3] TS500- 2000. Requirements for Design and Construction of Reinforced Concrete Structures, Standard TS500. Turkish Standards Institution, Ankara, Turkey.
  • [4] European Standard EN-1992-1-1. 2004. Eurocode 2, Design of concrete structures – Part 1–1: General rules for buildings. London: British Standards Institution.
  • [5] fib Model Code for Concrete Structures-2010. 2013. fib–International Federation for Structural Concrete. Berlin: Verlag Ernst & Sohn.
  • [6] Todisco, L., Bayrak, O., Reineck, K-H. 2018. ACI-DAfStb Database for Tests on Deep Beams and Comparisons with Code Provisions. Structural Concrete. 19(1), 296-304.
  • [7] British Standards Institute. 1997. BS8110-Structural use of concrete: Code of practice for design and construction. London.
  • [8] Reineck, K-H., Todisco, L. 2014. Database of Shear Tests for Non-Slender Reinforced Concrete Beams without Stirrups. ACI Structural Journal, 111(6), 1363-1371.
  • [9] Rogowsky, D. M., MacGregor, J. G., Ong, S. Y. 1986. Tests of Reinforced Concrete Deep Beams. ACI JOURNAL Proceedings, 83(4), 614-623.
  • [10] Kong, F. K., Robins, P. J., Cole, D. F. 1970. Web Reinforcement Effects on Deep Beams. ACI JOURNAL Proceedings, 67(12), 1010-1017.
  • [11] Park, J.W., Kuchma, D. 2007. Strut-and-Tie Model Analysis for Strength Prediction of Deep Beams. ACI Structural Journal, 104(6), 657-666.
  • [12] Sahoo, D. K., Sagi, M. S. V., Singh, B., Bhargava, P. 2010. Effect of Detailing of Web Reinforcement on the Behavior of Bottle-Shaped Struts. Journal of Advanced Concrete Technology, 8(3), 303-324.
  • [13] Vollum, R.L., Fang, L. 2014. Shear enhancement in RC beams with multiple point loads. Engineering Structures, 80, 389–405.
  • [14] Vollum, R.L., Fang, L. 2015. Shear enhancement near supports in RC beams. Magazine of Concrete Research, 67(9), 443–458.
  • [15] TBEC- 2018. Turkish Building Earthquake Code Specifications for Design of Buildings under Seismic Effects, Ministry of Disaster and Emergency Management Presidency, Ankara, Turkey.