Modifiye Edilmiş Pomza Kullanılarak Sulu Ortamlardan Adsorpsiyon Prosesi ile Arsenat (V) Giderimi

Bu çalışmada, adsorpsiyon yöntemi ile sulu ortamdan As(V) giderimi için ham ve yüzeyi modifiye edilmiş pomzanın etkinliği incelenmiştir. Granüler destek malzemesi olarak Isparta pomzası kullanılmış ve demir oksit ile kaplanmıştır. Katı sorbentlerinin yapı karakterizasyonunun belirlenmesi için FTIR, XRD ve BET yüzey alanı analizi yapılmış ve yüzey morfolojisinin gözlenmesi için SEM görüntüleri kullanılmıştır. HIP ve DOKIPkatı sorbentleri kullanılarak sulu çözeltiden As(V) giderimini etkileyen çözelti pH’ı, başlangıç As(V) konsantrasyonu, temas süresi, adsorbent dozu ve sıcaklık parametreleri incelenmiş ve optimum giderim koşulları tespit edilmiştir. DOKIPiçin maksimum As(V) giderimi ve adsorpsiyon kapasitesi sırasıyla % 95,99±1,43 ve 1,92±0,03 mg/g olarak elde edilmiştir. DOKIP ile As(V) adsorpsiyonu için ΔH, ΔS ve ΔG termodinamik parametreleri hesaplanmış, adsorpsiyon prosesinin ekzotermik karakterli olduğu belirlenmiştir. Deneysel adsorpsiyon verilerinin Langmuir, Freundlich ve Dubinin-Radushkevich (D-R) izotermlerine uygunluğu incelenmiş ve adsorpsiyon verilerinin Langmuir modeline uyduğu belirlenmiştir. Yüksek adsorpsiyon kapasitelerine dayanarak, sulu çözeltilerden As (V)'in önderiştirilmesi ve gideriminde DOKIPsorbenti umut verici alternatif bir adsorban olarak önerilmiştir.

Removal of Arsenate (V) by Adsorptıon Process from Aqueous Media Using Modified Pumice

In this study, the efficiency of row and surface modified pumice was investigated for As (V) removal from aqueous media by adsorption method. Isparta pumice is used as granular support material and coated with iron oxides. FTIR, XRD and BET surface area analysis were performed for determination of solid sorbents structure characterization and SEM images were used for observation of surface morphology. The impacts of pH, initial As(V) concentration, contact time, adsorbent dose and temperature  on As(V) removal were studied with using HIP and DOKIP as adsorbent and optimum removal conditions have been determined.  The maximum As(V) removal and adsorption capacity of DOKIP-1 were 95.99±1.43 % and 1.92±0.03 mg/g, respectively. The ΔH, ΔG and ΔS thermodynamic parameters for As(V) adsorption of  DOKIP are calculated and results showed that the adsorption process has exothermic character. The Langmuir, Freundlich and Dubinin–Radushkevich (D-R) isotherms were used to fit the equilibrium data. Langmuir model resulted in the best fit of the adsorption data. Based on high adsorption capacities, DOKIP sorbent has been proposed as a promising alternative adsorbent in the preconcentration and removal of As (V) from aqueous solutions.

___

  • [1] Monique, B., Fritz, H.F., 2003. Arsenic – a Review. Part I: Occurrence, Toxicity, Speciation, Mobility. Acta Hydrochimica et Hydrobiologica, 311(2003), 9–189.
  • [2] Mohan, D., Pittman, C.U., 2007. Review Arsenic removal from water/wastewater using adsorbents—A critical review. Journal of Hazardous Materials, 142(2007), 1–53.
  • [3] Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry 17(2002), 517–568.
  • [4] Choong, T.S.Y., Chuah, T.G., Robiah, Y., Koay, F.L.G., Azni, I., 2007. Arsenic Toxicity, health hazards and removal techniques from water: an overview. Desalination, 217(2007), 139-166.
  • [5] Bhattacharya, P., Mukherjee, A.B., Bundshuh, J., Zevenhoven, R., Loeppert, R.H., 2007. Arsenic in Soil and Groundwater Environment. Volume 9, Elsevier.
  • [6] Jain, C.K., Singh, R.D., 2012. Technological options for the removal of arsenic with special reference to South East Asia. Journal of Environmental Management, 107(2012), 1-18 .
  • [7] Song, S., Valdivieso, A.L., Campos, D.J.H., Peng, C., Fernandez, M.G.M., Soto, I.R., 2006. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite. Water Research, 40(2006), 364-372.
  • [8] Malik, A.H., Khan, Z.M., Mahmood, Q., Nasreen, S., Bhatti, Z.A., 2009. Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries. Journal of Hazardous Materials, 168(2009), 1-12.
  • [9] Wang, S., Zhao, X., 2009. On the potential of biological treatment for arsenic contaminated soils and groundwater. Journal of Environmental Management, 90(2009), 2367–2376.
  • [10] Sharma, V.K., Sohn, M., 2009. Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 35(2009), 743-759.
  • [11] Pokhrel, D., Viraraghavan, T., 2006. Arsenic removal from an aqueous solution by a modified fungal biomass. Water Research, 40(2006), 549-552.
  • [12] Lai, C.H., Lo, S.L., Chiang, H.L., 2000. Adsorption/desorption properties of copper ions on the surface of iron-coated sand using BET and EDAX analyses. Chemosphere 41(2000), 1249-1255.
  • [13] Lai, C.H., Chen, C.Y., 2001. Removal of metal ions and humic acid from water by iron-coated filter media. Chemosphere 44(2001), 1177-1184.
  • [14] Bekaroğlu, Ş.Ş.K. 2010. Yüzeyleri Modifiye Olmuş Çeşitli Adsorbanlarla Doğal Organik Madde Giderimi. Süleyman Demirel Üniversitesi,Fen Bilimleri Enstitüsü, Doktora Tezi, 284s, Isparta.
  • [15] Funing, L., Daren C., 1982. Rapid spectrophotometric determination of arsenic and phosphorus after development of molybdenum blue complex at room temperature. Analytical Abstracts, 42(1982), 130.
  • [16] Far, L.B., Souri, B., Heidari, M., Khoshnavazi, R., 2012. Evaluation Of Iron And Manganese-Coated Pumice Application For The Removal Of As(V) From Aqueous Solutions. Iranian Journal Of Environmental Health Science & Engineering, 9(2012), 1-9.
  • [17] Oztel, M.D., Akbal, F., Altas, L., 2015. Arsenite Removal By Adsorption Onto İron Oxide-Coated Pumice And Sepiolite. Environmental Earth Sciences, 73(8)(2015), 4461-4471.
  • [18] Chang, Y., Li, C. W., Benjamin, M. M., 1997. Iron oxide-coated media for NOM sorption and particulate filtration. Journal of the American Water Works Association, 89 (5)(1997), 100-113.
  • [19] Indah, S., Helard, D., 2017. Evaluation Of İron And Manganese-Coated Pumice From Sungai Pasak, West Sumatera, Indonesia For The Removal Of Fe (II) And Mn (II) From Aqueous Solutions. Procedia Environmental Sciences, 37(2017), 556-563.
  • [20] Boddu, V. M., Abburi, K., Talbott, J.L., Smith, E.D., Haasch, R. 2008. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Research, 42 (3)(2008), 633–642.
  • [21] Ranjan, D., Talat M. ve Hasan, S.H., 2009. Biosorption of Arsenic from Aqueous Solution Using Agricultural Residue ‘Rice Polish’. Journal of Hazardous Materials, 166(2009), 1050–1059.
  • [22] Natale, F.D., Erto, A., Lancia, A., Musmarra, D., 2008. Experimental and Modelling Analysis of As(V) Ions Adsorption on Granular Activated Carbon. Water Research, 42(2008), 2007–2016.
  • [23] Chen, W., Parette, R., Zou,J., Cannon, F.S. ve Dempsey, B.A., 2007. Arsenic Removal by Iron-Modified Activated Carbon. Water Research, 41(2007), 1851–1858.
  • [24] Wang, X., Liu, Y., Zheng, J., 2016. Removal of As(III) and As(V) from water by chitosan and chitosan derivatives: a review. Environmental Science Pollution Research, 23(2016), 13789–13801.
  • [25] Sarı, A., Mendil, D., Tuzen, M., Soylak, M. 2008. Biosorption of Cd(II) and Cr(III) From Aqueous Solution by Moss (Hylocomium splendens) Biomass: Equilibrium, Kinetic and Thermodynamic Studies. Chemical Engineering Journal, 144(2008), 1–9.
  • [26] Karaoglu, H.M., Zor, Ş., Ugurlu, M., 2010. Biosorption of Cr(III) from solutions using vineyard pruning waste. Chemical Engineering Journal, 159(2010), 98–106.
  • [27] Gupta, V.K., Rastogi, A., Nayak, A. 2010. Adsorption Studies on the Removal of Hexavalent Chromium From aqueous Solution Using a Low Cost Fertilizer Ġndustry Waste Material. The Journal of Colloid and Interface Science, 342(2010), 135–141.
  • [28] Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinium. Journal of American Chemical Society, 40, 1361–1403.
  • [29] Freundlich, H.M.F., 1906. Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie (Leipzig) 57A, 385–470.
  • [30] Dubinin, M.M., Zaverina, E.D., Radushkevich, L.V., 1947. Sorption and structure of active carbons. I. Adsorption of organic vapors, Zhurnal Fizicheskoi Khimii. 21, 1351–1362.
  • [31] Helfferich, F., 1962. Ion Exchange, McGraw Hill, New York, USA, p. 166.
  • [32] Sawalha, M.F., Videa, J.R.P., Gonzalez, J.R., Gardea-Torresdey, J.L., 2006. Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies. Journal of Colloid and Interface Science, 300, 100–104.
  • [33] Yazdani, M., Tuudjarvi, T., Bhatnagar, A., Vahala, R., 2016. Adsorptive removal of arsenic (V) from aqueous phase by feldspars: Kinetics, mechanism, and thermodynamic aspects of adsorption. Journal of Molecular Liquids, 214(2016), 149–156.
  • [34] Afzali, D., Rouhani, M., Fathirad, F., Shamspur, T., Mostafavi, A., 2016. Nano-iron Oxide Coated On Sand As A New Sorbent For Removal Of Arsenic From Drinking Water. Desalination and Water Treatment, 57(2016), 13030–13037.
  • [35] Chaudhry, S.A., Ahmed, M., Siddiqui, S.I., Ahmed, S., 2016. Fe (III)-Sn (IV) Mixed Binary Oxide-coated Sand Preparation and Its Use for the Removal of As (III) and As (V) from Water: Application of Isotherm, Kinetic and Thermodynamics. Journal of Molecular Liquids, 224(2016), 431–441.
  • [36] Hsu, J.C., Lin, C.J., Liao, C.H., Chen, S.T., 2008. Removal of As (V) and As (III) by Reclaimed Iron-oxide Coated Sands. Journal of Hazardous Materials, 153(2016), 817–826.
  • [37] Massoudinejad, M., Asadi, A., Vosoughi, M., Gholami, M., Karami, M.A.A, 2015. Comprehensive Study (Kinetic, Thermodynamic And Equilibrium) Of Arsenic (V) Adsorption Using KMnO4 Modified Clinoptilolite. Korean Journal of Chemical Engineering, 32(2015), 2078–2086.
  • [38] Yusof, A.M., Malek, N., 2009. Removal of Cr (VI) and As (V) From Aqueous Solutions By HDTMA-Modified Zeolite Y. Journal of Hazardous Materials, 162(2009), 1019–1024.
  • [39] Asere, T.G., Verbeken, K., Tessema, D.A., Fufa, F., Stevens, C.V., Du Laing, G. 2017. Adsorption of As(III) versus As(V) from aqueous solutions by cerium-loaded volcanic rocks. Environmental Science and Pollution Research, 24(25)(2017), 20446-20458.
  • [40] Ouédraogo, I.W.K., Pehlivan, E., Tran, H.T., Paré, S., BonziCoulibaly, Y.L., Zachmann, D., Bahadir, M., 2016. Removal Of Arsenic (V) From Aqueous Medium Using Manganese Oxide Coated Lignocellulose/Silica Adsorbents. Toxicological and Environmental Chemistry, 98(2016), 736–747.
  • [41] Pokhrel, D., Viraraghavan, T., 2008. Arsenic Removal from an Aqueous Solution by Modified A. Niger Biomass: Batch Kinetic and Isotherm Studies. Journal of Hazardous Materials, 150(2008), 818–825.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: 3
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi
Sayıdaki Diğer Makaleler

Acıgöl Grabeni Kuzeyindeki Pliyo-Kuvaterner Yaşlı Karasal Çökellerin Fasiyes Özellikleri ve Bölgenin Paleoortamsal Gelişimi, GB-Türkiye

Ezher TAGLIASACCHI, Fuzuli YAĞMURLU

nsansız Hava Araçları Kullanılarak Olası Kaya Düşmelerinin Coğrafi Bilgi Sistemleri Tabanlı 3D Modellenmesi: Kasımlar Köyü (Isparta-Türkiye) Örneği

ERHAN ŞENER

Korning Cam ve Si Alttaşlar Üzerine RF Magnetron Püskürtme ile Büyütülen SnO2 İnce Filmlerin Derinlik Profil Analizi

Nihan AKIN SÖNMEZ

Hayrabolu’da Evsel Katı Atık Toplama Faaliyetleri Sonucu Oluşan Sera Gazlarının Tespiti ve Karşılaştırılması

Eyüp Nafiz KORKUT

Tüketicilerin Yatak Seçim Davranışlarının İncelenmesi

Havva TOKGÖZ, SİBEL KAPLAN

Bulanık Küme Degerli LA- ˘ Γ-Yarıgrup Homomorfileri ile Türetilmi¸s Genelle¸stirilmi¸s Bulanık Kaba Yakla¸sımların Bazı Cebirsel Özellikleri

Canan AKIN, Kübra EYÜBOĞLU

Mevcut Okul Türü Binaların Deprem Güvenliğinin Pratik Bir Şeklide Belirlenmesi için Bir Yaklaşım: ATI

Hakan ULUTAŞ, Hakan DİLMAÇ, Hamide TEKELİ, Fuat DEMİR

Şuhut (Afyonkarahisar) Batısı Su Kaynaklarının Hidrojeoloji ve Hidrojeokimyasal İncelemesi

AYŞEN DAVRAZ, Yaşar BAL, Fatma AKSEVER, SİMGE VAROL

A Comparative Study of Machine Learning and Deep Learning for Time Series Forecasting: A Case Study of Choosing the Best Prediction Model for Turkey Electricity Production

Ramazan Erkin ÜNLÜ

Kaotik Harita Temelli Ağaç Tohum Algoritması

Burhanettin DURMUŞ