Eriyik Yığma Modellemesi Esaslı Üç Boyutlu (3B) Eklemeli Üretim Tekniği Kullanılarak Poliüretan Malzemeden Bir Yapay İnsan Kulak Kepçesi Üretimi

Son yıllarda 3B baskı teknolojileri sahip olduğu yüksek üretim hızı, uygun maliyeti ve biyouyumlu malzeme üretimine imkan veren özellikleriyle yapay organ geliştirme alanına önemli yenilikler getirmiştir. Bu çalışmada, eriyik yığma modellemesi (EYM) özelliğine sahip bir 3B yazıcı kullanarak poliüretan (PU) polimeriyle hacimsel olarak farklı doluluk oranlarında (%25, %50, %75 ve %100) yapay insan kulak kepçesi üretimi gerçekleştirilmiştir. Kimyasal yapı analizleri için Fourier dönüşümlü kızılötesi (FTIR) spektroskopisi, termal analizler için termogravimetrik analiz (TGA) cihazı, yüzey görüntülerini incelemek için stereomikroskop ve taramalı elektron mikroskobu (SEM), mekanik ölçümler için sertlik ve çekme testi cihazları kullanılmıştır. Geliştirilen yapay kulak kepçelerinden en uygun tasarımın %50 doluluk oranına sahip olan kulak tasarımı olduğu belirlenmiştir.

Production of an Artificial Human Auricle from Polyurethane by Using Three Dimensional (3D) Additive Manufacturing Technique Based Fused Deposition Modelling

In recent years, 3D printing technologies have brought significant innovations in the field of artificial organ development due to their properties such as high production speed, cost effective and enabling fabrication of biocompatible materials. In this study, artificial human auricles were produced in different infill rates (25%, 50%, 75% and 100%) volumetrically with polyurethane (PU) polymer by using a 3D printer based on fused deposition modelling (FDM). Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analyzer (TGA), stereomicroscope, scanning electron microscope (SEM), hardness tester and tensile test machine were used for chemical structure analysis, thermal analysis, surface images and mechanical measurements respectively. It was determined that the most suitable design among the developed artificial auricles is the auricle having 50% infill rate.

___

  • [1] Suaste-Gómez, E., Rodríguez-Roldán, G., Reyes-Cruz, H., Terán-Jiménez, O. 2016. Developing an Ear Prosthesis Fabricated in Polyvinylidene Fluoride by a 3D Printer with Sensory Intrinsic Properties of Pressure and Temperature. Sensors, 16(3), 332-342.
  • [2] Park, C., Yoo, Y-S., Hong, S-T. 2010. An update on auricular reconstruction: Three major auricular malformations of microtia, prominent ear and cryptotia. Current Opinion in Otolaryngology & Head and Neck Surgery, 18(6), 544-549.
  • [3] Mi, H-Y., Salick, M. R., Jing, X., Jacques, B. R., Crone, W. C., Peng, X-F., Turng, L-S. 2013. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Materials Science and Engineering C, 33(8), 4767-4776.
  • [4] Ngo, T. D., Kashani, A., Imbalzano G., Nguyen, K. T. Q., Hui, D. 2018. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196.
  • [5] Bakar, N. S. A., Alkahari, M. R., Boejang, H. 2010. Analysis on fused deposition modelling performance. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(12), 972–977.
  • [6] Hohimer, C., Christ, J., Aliheidari, N., Mo, C., Ameli, A. 2017. 3D printed thermoplastic polyurethane with isotropic material properties. Proceeding of SPIE, Behavior and Mechanics of Multifunctional Materials and Composites, 10165(11), 277-286.
  • [7] Brenken, B., Barocio, E., Favaloro, A., Kunc, V., Pipes, R. B. 2018. Fused filament fabrication of fiber-reinforced polymers: A review. Additive Manufacturing, 21, 1-16.
  • [8] Zeng, W., Lin, F., Shi, T., Zhang, R., Nian, Y., Ruan, J., Zhou, T. 2008. Fused deposition modelling of an auricle framework for microtia reconstruction based on CT images. Rapid Prototyping Journal, 14(5) 280-284.
  • [9] Przybytek, A., Gubańska, I., Kucińska-Lipka, J., Janik, H. 2018. Polyurethanes as a Potential Medical-Grade Filament for Use in Fused Deposition Modeling 3D Printers - a Brief Review. FIBRES & TEXTILES in Eastern Europe, 26, 6(132), 120-125.
  • [10] Chohan, J. S., Singh, R., Boparai, K. S., Penna, R., Fraternali, F. 2017. Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications.Composites Part B, 117, 138–149.
  • [11] Mohamed, O. A., Masood, S. H., Bhowmik, J. L. 2016. Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion. Measurement, 81, 174-196.
  • [12] Mohamed, O. A., Masood, S. H., Bhowmik, J. L. 2015. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Additive Manufacturing, 3(1), 42-53.
  • [13] Chung, M., Radacsi, N., Robert, C., McCarthy, E. D., Callanan, A., Conlisk, N., Hoskins, P. R., Koutsos, V. 2018. On the optimization of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry. 3D Printing in Medicine, 4(2), 1-10.
  • [14] Ulağ, S., Kalkandelen, C., Oktar F. N., Uzun, M., Şahin, Y, M., Karademir, B., Arslan, S., Kılıç, O., Ekren, N., Gündüz, O. 2018. 3 Boyutlu Yazıcı ile Polikaprolakton/Kitosan/Hidrojel Bazlı Küçük Çaplı Yapay Damar Üretimi. 23. Biyomedikal Bilim ve Teknoloji Sempozyumu, 15-16 Aralık, İstanbul, 34.
  • [15] Dong, Z., Li, Y., Zou, Q. 2009. Degradation and biocompatibility of porous nano hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Applied Surface Science, 255(12), 6087-6091.
  • [16] Lee, M., Koo, J., Ki, H., Lee, K. H., Min B. H., Lee, Y. C., Kim, J. H. 2017. Phase Separation and Electrical Conductivity of Nanocomposites Made of Ether-/Ester-based Polyurethane Blends and Carbon Nanotubes. Macromolecular Research, 25(3), 231-242.
  • [17] Han, B., Cheng, A., Ji, G., Wu, S., Shen, J. 2004. Effect of Organophilic Montmorillonite on Polyurethane/Montmorillonite Nanocomposites. Journal of Applied Polymer Science, 91(4), 2536-2542.
  • [18] Petrović, Z. S., Javni, I., Waddon, A., Bánhegyi, G. 2000. Structure and Properties of Polyurethane-Silica Nanocomposites. Journal of Applied Polymer Science, 76(2), 133–151.
  • [19] Xia, H., Song, M. 2005 Preparation and characterization of polyurethane-carbon nanotube composites. Soft Matter, 1(5), 386-394.
  • [20] Cangemi, J. M., Neto, S. C., Chierice, G. O., dos Santos, A. M. 2006. Study of the Biodegradation of a Polymer Derived from Castor Oil by Scanning Electron Microscopy, Thermogravimetry and Infrared Spectroscopy. Polímeros: Ciência e Tecnologia, 16, (2), 129-135.
  • [21] ASTM International. 2017. D2240-15 Standard Test Method for Rubber Property-Durometer Hardness, Planning Technology Inc, 13s. New Hampshire, ABD.
  • [22] Qi, H. J., Boyce, M. C. 2005. Stress-strain behavior of thermoplastic polyurethanes. Mechanics of Materials, 37(8), 817-839.
  • [23] Petrovic, Z. S., Ferguson, J. 1992. Polyurethane Elastomers. Progress in Polymer Science, 16(5), 695-836.