Tozaltı Ark Kaynağı Yöntemi Birleştirilen HSLA S960QL Çeliğinde Kaynak Parametrelerinin Mikroyapı ve Mekanik Özellikler Üzerinde Etkisi

Bu çalışmada; S960QL düşük karbonlu ve yüksek mukavemetli düşük alaşımlı çelikler, mikroyapı ve mekanik özelliklerinin araştırılması amacıyla tozaltı ark kaynağı yöntemi kullanılarak kaynak edilmişlerdir. Mikroyapısal incelemelerde tozaltı kaynak bölgeleri için mikroskobik muayene teknikleri uygulanmıştır. Kaynak ve ana metalden elde edilen farklı numunelerin mekanik özellikleri için çekme, darbe ve mikro sertlik testleri yapılmıştır. Yassı çekme numune mukavemet değerleri ana metale yakın değerler vermiştir. Fakat kaynak metalinden elde edilen yuvarlak tip çekme numune dayanımları ana metalden çok düşük çıkmıştır. Kopan parçaların kırılma yüzeyleri optik ve taramalı elektron mikroskobu ile incelenmiştir. Charpy darbe testleri; ana metal, kaynak metali merkez hattı, ergime hattı, kaynak metali merkez hattı ve ergime hattı arası bölgelerinden yapılmıştır. Kaynak metali ergime hattı darbe enerjisi ana metalden daha düşük ölçülmüştür. En düşük darbe enerjisi ergime hattında ölçülmüştür. Mikrosertlik testlerinde, en yüksek değer ısıdan etkilenmiş bölgeden ölçülmüştür. Mikroyapı analizlerinde, kaynak dikişi-ısıdan etkilenmiş bölge ara yüzeyi ve ısıdan etkilenmiş bölge mikroyapılarının ana malzemeye göre daha büyük taneli olduğu görülmüştür. Isıdan etkilenmiş bölge ortaya çıkan yüksek sıcaklık değerleri nedeniyle alaşım karbürleri çözünmüş ve tane büyümesi daha kolay bir şekilde gerçekleşmiştir.

The Effect of Welding Parameters on Microstructural and Mechanical Properties of HSLA S960QL Type Steel with Submerged Arc Welding

In this study, S960QL steels were welded with submerged arc welding process in order to examine microstructural and mechanical properties. For the microstructural investigation, microscopical examination methods were used for weld zones. Tensile, impact toughness and micro hardness tests were made for different samples obtained from the weld zone and the base metal. The examinations of fracture surfaces were made by using optical microscope and scanning electron microscope. The flat type tensile strength values were near to the base materials. Charpy impact toughness tests were made for the base metal, the weld metal center line, the fusion line, the zone between weld metal centerline and the fusion line. Impact energy of the weld metal was obtained lower than the base metal. The lowest impact energy was obtained at the fusion line. Heat affected zone had the highest value in micro hardness tests. In microstructure evaluation, the interface of the fusion zone-heat affected zone and heat affected zone had coarser grain structure than the base metal. Alloy carbides dissolved because of the high temperature values occurred at heat affected zone.

___

  • Dunđer, M., Vuherer, T., Samardžić I., 2014. Weldability of microalloyed high strength steels TStE 420 and S960QL. Metalurgija 53, 3, 335-338.
  • Kim J. H., Oh, Y. J., Hwang, II S., Kim D. J., Kim J. T. 2001. Fracture behavior of heat-affected zone in low alloy steels. Journal of Nuclear Materials, 299, 132-139.
  • Kou, S. 2003. Welding Metallurgy. John Wiley & Sons Inc. Publication. New Jersey, USA, 405 pp.
  • Ada, H. 2006. Weldability of Pipes Produced for Crude Oil and Natural Gas Pipelines with The Method of Submerged and Spiral Arc Welding and Researching Their Mechanical Properties, M.Sc. Thesis, p. 145, Gazi University, Ankara.
  • Porter, D. A. 2015. Weldable High-Strength Steels: Challenges and Engineering Applications. IIW International Conference, 2-3 July, Helsinki, 1-14.
  • Garašić, I., Ćorić, A., Kožuh, Z., Samardžić, I. 2010. Occurrence of cold cracks in welding of highstrength S960QL steel. Technical Gazette 17, 3, 327-335.
  • Jun, H. J., Kang, K. B., Park, C. G. 2003. Effects of cooling rate and isothermal holding on the precipitation behavior during continuous casting of Nb–Ti bearing HSLA steels. Scripta Materialia, 49, 1081–1086.
  • Fatehi, A., Calvo, J., Elwazri, A. M., Yue, S. 2010. Strengthening of HSLA steels by cool deformation. Materials Science and Engineering, A 527, 4233–4240.
  • Chandel, R. S., Seow, H. P., Cheong, F. L. 1997. Effect of increasing deposition rate on the bead geometry of submerged arc welds. Journal of Materials Processing Technology, 72, 124–128.
  • Kiran, D. V., Basu, B., Dea, A. 2012. Influence of process variables on weld bead quality in two wire tandem submerged arc welding of HSLA steel. Journal of Materials Processing Technology, 212, 2041–2050.
  • Shen, S., Oguocha, I. N. A., Yannacopoulos, S. 2012. Effect of heat input on weld bead geometry of submerged arc welded ASTM A709 Grade 50 steel joints. Journal of Materials Processing Technology, 212, 286–294.
  • Cwiek, J. 2005. Hydrogen assisted cracking of high-strength weldable steels in sea-water. Journal of Materials Processing Technology, 164–165, 1007–1013.
  • Gorni, A. A., Mei, P. R. 2004. Austenite transformation and age hardening of HSLA-80 and ULCB steels. Journal of Materials Processing Technology, 155–156, 1513–1518.
  • Beretta, S., Bernasconi, A., Carboni, M. 2009. Fatigue assessment of root failures in HSLA steel welded joints: A comparison among local approaches. International Journal of Fatigue, 31, 102–110.
  • V. Jablokov, D. M. Goto, D. A. Koss, J. B. McKirgan. 2001. Temperature, strain rate, stress state and the failure of HY-100 steel, , Materials Science and Engineering, A 302, 197–205.
  • J. J. S. Dilip, G. D. J. Ram, T. L. Starr, B. Stucker. 2017. Selective laser melting of HY-100 steel: Process parameters, microstructure and mechanical properties. Additive Manufacturing, 13, 49–60.
  • S. Sivaprasad, S. Tarafder, V. R. Ranganath, K. K. Ray. 2000. Effect of prestrain on fracture toughness of HSLA steels, Materials Science and Engineering, A 284, 195–201.
  • H. Jo Jun, K.B. Kang, C. G. Park. 2003. Effects of cooling rate and isothermal holding on the precipitation behavior during continuous casting of Nb–Ti bearing HSLA steels. Scripta Materialia, 49, 1081–1086.
  • Q. Xue, D. Benson, M. A. Meyers, V. F. Nesterenko, E. A. Olevsky. 2003. Constitutive response of welded HSLA 100 steel. Materials Science and Engineering, A 354, 166–179.
  • Q. Xue, D. Benson, M. A. Meyers, V. F. Nesterenko, E. A. Olevsky. 2003. Constitutive response of welded HSLA 100 steel. Materials Science and Engineering, A 354, 166–179.
  • L. Zhang, Th. Kannengiesser. 2014. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel. Materials Science and Engineering, A 613, 326–335.
  • S. Nemat-Nasser, W. Guo. 2005. Thermomechanical response of HSLA-65 steel plates: experiments and modeling. Mechanics of Materials, 37, 379–405.
  • American Society for Metals. 2001. HighStrength Low-Alloy Steels. Carbon and Alloy Steels. ASM, USA, pp.193.
  • A. J. Craven, K. He, L. A. J. Garvie, T. N. Baker. 2000. Complex Heterogeneous Precipitation in Titanium– Niobium Microalloyed Al-killed HSLA steels – I.(Ti,Nb)(C,N) particles. Acta Materialica 48, 3857–3868.
  • M. Opiela. 2010. Hydrogen embrittlement of welded joints for the heat-treatable XABO 960 steel heavy plates. Journal of Achievements in Materials and Manufacturing, 38, 41–48.
  • L. Wei, T.W. Nelson. 2012. Influence of heat input on post weld microstructure and mechanical properties of friction stir welded HSLA-65 steel. Materials Science and Engineering, A 556, 51–59.
  • B. K. Show, R. Veerababu, R. Balamuralikrishnan, G. Malakondaiah. 2010. Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel. Materials Science and Engineering, A 527, 1595 – 1604.
  • S. Kumar, S.K. Nath. 2016. Effect of heat input on impact toughness in transition temperature region of weld CGHAZ of a HY 85 steel. Journal of Materials Processing Technology, 236, 216–224.
  • V. R. Mattes. 1990. Microstructure and mechanical properties of HSLA-100 steel. M.Sc. Thesis, p. 3, Naval Postgraduate School, California, USA.