Türkiye’deki Calopteryx splendens (Harris, 1782) (Insecta: Odonata) Alttürlerinin Ekolojik Niş Modellemesi

Türkiye coğrafik konumu, topografik yapısı, çeşitli iklim tiplerini bulundurması nedeniyle biyolojik çeşitlilik açısından önemli bir bölgededir. Türleşme ve alt populasyonların oluşumlarına rastlanmaktadır. Bu çalışmada Türkiye’de yayılış gösteren Calopteryx splendens (Harris, 1782) türüne ait olan morfolojik olarak tanımlanmış alttürlerin, 19 ekolojik faktörün analizi neticesinde farklı lokasyonlarda aynı koşulları sağlayabilen potansiyel dağılım alanlarının belirlenmesi hedeflenmiştir. C. splendens alttürlerin günümüzdeki dağılım haritaları MaxEnt ekolojik niş modelleme yöntemleri kullanarak yapılmıştır. Bu sonuçlara göre, faunistik verilere göre dağılımları bilinen C. splendens alttürlerin yayılış alanlarının ekolojik verilerle ortaya konan dağılım alanlarıyla hemen hemen örtüştüğü tespit edilmiştir.

Ecological niche modeling of Calopteryx splendens (Harris, 1782) (Insecta: Odonata) subspecies in Turkey

Turkey is an important region in terms of biodiversity because of its geographical location, topographical structure and the presence of various climate types. The emergence of new species and subpopulations can be seen. In this study, we evaluated subspecies of Calopteryx splendens (Harris, 1782) distributed in Turkey. 19 ecological parameters of the current known localities of these subspecies were analyzed. The pottential habitats and new locations for the subspecies populations were investigated. Current distribution maps of C. splendens subspecies have been made using MaxEnt ecological niche modeling methods. According to these results, it was found that the distribution areas of C. splendens subspecies, whose distributions according to faunistic data are known, almost overlapped with the distribution areas of ecological data.

___

  • Finch, J.M., Samways, M.J., Hill, T.R., Piper, S.E., Taylor, S. 2006. Application of predictive distribution modelling to invertebrates: Odonata in South Africa. Biodiversity and Conservation, 15 (3), 4239-4251.
  • Bush A.A., Nipperess, D.A., Duursma, D.E., Theischinge, G., Turak, E., Hughes, L. 2014. Continental-Scale Assessment of Risk to the Australian Odonata from Climate Change, PlosOne, 9(2), e88958.
  • Şekercioğlu, C.H. ve ark. 2011. Turkey’s globally important biodiversity in crisis. Biological Conservation, 144, 2752-2769.
  • Çıplak, B. 2003. Distribution of Tettigoniinae (Orthoptera, Tettigoniidae) bush-crickets in Turkey: the importance of the Anatolian Taurus Mountains in biodiversity and implications for conservation. Biodiversity and Conservation, 12, 47-64
  • Çıplak, B., Demirsoy, A., Bozcuk, A. N. 1993. Distribution of Orthoptera in relation to the Anatolian Diagonal in Turkey. Articulata, 8, 1-20.
  • Dumont, H. J., Demirsoy, A., Verschuren, D. 1987. Breaking the Calopteryx-Bottleneck: Taxonomy and Range of Calopteryx splendens waterstoni Schneider, 1984 and of C.splendens tschaldirica Bartenef, 1909 (Zygoptera: Calopterygidae). Odonatologica, 16 (3), 239-247.
  • Hijmans, R.J., Guarino, L., Mathur, P. 2012. DIVA GIS Version 7.5 Manual. [Online]. http://www.diva-gis.org/docs/DIVA GIS_manual_7.pdf. [40] Phillips, S.J. 2010. A brief tutorial on Maxent. Lessons in Conservation, 3, 107-135.
  • Varela, S., Anderson, R. P., Valdes, R. G., Gonzalez, F. F. 2014. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography, 37, 1084- 1091.
  • Boria, R. A., Olson, L. E., Goodman, S. M., Anderson, R. P. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73-77.
  • [36] Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17 (1), 43-57.
  • Phillips, S.J., Dudík, M., Schapire, R.E. 2004. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, ACM Press, Newyork, 655- 662.
  • Schneider, W. 1984 Description of Calopteryx waterstoni spec.nov. from Northeastern Turkey (Zygoptera: Calopterygidae). Odonatologica, 13 (2), 281-286.
  • Salur, A., Mesci, S. 2007. Additional Records for the Odonata Fauna of Çorum Province (Turkey). Munis Entomology & Zoology, 2 (1), 169-170.
  • Salur, A., Kıyak S. 2006. Additional Records for the Odonata Fauna of East Mediterranean Region of Turkey. Munis Entomology & Zoology, 1 (2), 239-252.
  • Miroğlu, A., Kartal, V., Salur, A. 2011. Odonata of the Eastern Black Sea Region of Turkey, with Some Taxonomic Notes. Odonatologica, 40 (2), 105-122.
  • Hacet, N. 2009. Odonata of the Western Black Sea Region of Turkey, with Taxonomic Notes and Species List of the Region. Odonatologica, 38 (4), 293-306.
  • Hacet, N., Aktaç, N. 2009. Contribution to the knowledge of Odonata fauna of Southern Marmara Region of Turkey. Türkiye Entomoloji Dergisi, 33 (3), 171-178.
  • Hacet, N., Aktaç, N. 2004. Considerations on the Odonate Fauna of Turkish Thrace, with Some Taxonomic Notes. Odonatologica, 33 (3), 253- 270.
  • Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling, 190 (3-4), 231–259.
  • Karacaoğlu, Ç. 2013. Isophya rizeensis (Orthoptera:Tettigoniidae) türünün ekolojik niş modellemesi. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Doktora Tezi, 133s, Ankara.
  • Per, S., Erciyas Yavuz, K., Demirtaş, S. 2015. Karabaşlı çinte (Emberiza melanocephala Scopoli, 1769)’nin ekolojik niş modeli ve Türkiye’deki durumu. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31 (2), 89-96.
  • Abolafya, M., Onmuş, O., Şekercioğlu, Ç.H., Bilgin, R. 2013. Using citizen science data to model the distributions of common songbirds of Turkey under different global climatic change scenarios. PLoS ONE, 8 (7), e68037.
  • Gül, S., Kumlutaş, Y., Ilgaz, Ç. 2015. Climatic preferences and distribution of 6 evolutionary lineages of Typhlops vermicularis Merrem, 1820 in Turkey using ecological niche modeling. Turkish Journal of Zoology, 39, 235-243.
  • Sergio, G.C., Soto-Centeno, A.J., Reed, D.L. 2011. Population distribution models: species distributions are better modeled using biologically relevant data partitions. BMC Ecology, 11 (1), 20.
  • Rödder, D., Weinsheimer, F., Lötters, S. 2010. Molecules meet macroecology: Combining species distribution models and phylogeographic studies. Zootaxa, 60, 54-60.
  • Peterson, A.T., Robins, C.R. 2003. Using ecological-niche modeling to predict barred owl invasions with implications for spotted owl conservation. Conservation Biology, 17 (4), 1161-1165.
  • Peterson, A.T. 2003. Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology, 78 (4), 419- 433.
  • VanDerWal, J., Shoo, L.P., Johnson, C.N., Williams, S.E. 2009. Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. The American Naturalist, 174 (2), 282-291.
  • Peterson, A.T. 2006. Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics, 3, 59-72.
  • Elith, J. ve ark. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29 (2), 129–151.
  • Wiens, J.J., Graham, C.H. 2005. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution and Systematics, 36, 519-539.
  • Guisan, A., Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8 (9), 993-1009.
  • Peterson, A.T, Sanchez-Cordero, V., Beard, C.B., Ramsey, J.M. 2002. Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerging Infectious Diseases, 8 (7), 662-667.
  • Nogues-Bravo, D. 2009. Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18 (5), 521-531.
  • Gür, H. 2013. The effects of the Late Quaternary glacial–interglacial cycles on Anatolian ground squirrels: range expansion during the glacial periods?. Biological Journal of the Linnean Society, 109 (1), 19-32.
  • Graham, C.H., Ron, S.R., Santos, J.C., Schneider, C.J., Moritz C. 2004. Integrating Phylogenetics And Environmental Niche Models To Explore Speciation Mechanisms In Dendrobatid Frogs. Evolution, 58 (8), 1781-1793.
  • Watt, W. B. 1968. Adaptive significance of pigment polymorphisms in Coliasbutterflies. I. Variation of melanin pigment in relationto thermoregulation. Evolution, 22 (3), 437-458.
  • Kingsolver, J.G., Koehl M. 1985. Aerodynamics, thermoregulation, and the evolution of insect wings: differential scaling and evolutionary change. Evolution, 39 (3), 488-504.
  • Svensson, E. I., Waller, J.T. 2013. Ecology and Sexual Selection: Evolution of Wing Pigmentation in Calopterygid Damselflies in Relation to Latitude, Sexual Dimorphism, and Speciation. The American Naturalist, 182(5), E174-95.
  • Hassall, C. 2014. Continental variation in wing pigmentation in Calopteryxdamselflies is related to the presence of heterospecifics. PeerJ PrePrints 2: e316v1 https://doi.org/10.7287/peerj.preprints.316v1.
  • Dumont, H. J., Mertens, J., De Coster, W. 1993. The Calopteryx splendens-cline in Southwest France, analysed by quantitative wingspot analysis. Odonatologica, 22 (3), 345–351.
  • Dumont, H.J., Vanfletern, J.R., De Jonckheere, J.F., Weekers, P.H.H. 2005. Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences. Systematic Biology, 54 (3), 347-362.
  • Demirsoy, A. 2002. Genel Zoocoğrafya ve Türkiye Zoocoğrafyası, Beşinci Baskı. Meteksan, Ankara, ss 327-348.
  • Kalkman, V.J. 2006. Key to the dragonflies of Turkey, İncluding species known from Greece, Bulgaria, Lebanon, Syria, the Trans-Caucasus and Iran. Brachytron, 10 (1), 3-82.
  • Mertens, J., De Coster, W., De Mayer, H., Dumont, H.J. 1992. A method for the quantitative analysis of wing spots applied to two populations of Calopteryx splendens (Harris) (Zygoptera: Calopterygidae). Odonatologica, 21 (4), 443-451.