Ters Basamak Şekilli Kanal İçerisindeki Laminer Akışın Eşlenik Isı Transferi Karakteristiği

Bu çalışma iletken katı bir alt duvarı olan ters basamak şekilli bir kanal için, katının akışkana göre iletim oranı, katı duvarın kalınlığı, Prandtl ve Reynolds sayılarının eşlenik ısı transferine etkilerini incelemektedir. 2006 yılında Kanna ve Das aynı problem için bir durum çalışması yapmış olmalarına rağmen, sunulan bu çalışmanın da dâhil olduğu sonraki yıllarda yapılan karşılaştırma çalışmaları Kanna ve Das’ın sonuçlarının tartışmalı olduğunu ortaya koymuştur. Ramsak çalışmasında “kişisel iletişim sırasında Profesör Kanna’nın elde ettikleri sonuçların muhtemelen yanlış olduğunu teyit ettiğini” belirtmektedir. Bu çalışmada sunulan ara yüzey boyunca sıcaklık ve Nusselt sayısı değişimleri Ramsak’ın elde ettikleri ile mükemmel bir uyum içerisindedir. Bu makalede sunulan analizler, her ne kadar Prandtl sayısındaki düşüşün ve katının akışkana iletim oranındaki artışın ara yüzey sıcaklığı üzerindeki genel etkisinin katı duvardaki incelmeyle benzer olduğunu ortaya koysa da, ilk iki parametrenin etkileri resirkülasyon bölgesinde sınırlıdır.

Conjugate Heat Transfer Characteristics of Laminar Flows Through a Backward Facing Step Duct

Present study investigates the effects of solid to fluid conductivity ratio, Prandtl and Reynolds numbers, and solid wall thickness on conjugate heat transfer for a backward facing step duct with a conductive solid bottom wall. Although Kanna and Das performed a case study in 2006 for the same problem, the benchmark studies conducted later including the present one revealed that their results are arguable. Ramsak states in a study “Professor Kanna has confirmed in personal communication that their results are probably wrong”. The temperature and Nusselt number variations along the solid-fluid interface presented here are in excellent agreement with those obtained by Ramsak. The analyses presented here reveal that even though the decrease in Pr and the increase in solid to fluid conductivity ratio have similar global influence with the thinning wall on the interface temperature, the influence of the former parameters are limited in recirculation zone.

___

  • Topbas, B.S. Celik, B., 2015, Conjugate heat transfer analysis for internally cooled solid structure, 20. Ulusal Isı Bilimi ve Tekniği Kongresi, 2-5 September, Balıkesir, Turkey, 2015.
  • OpenFOAM UserGuide, http://foam.sourceforge.net/docs/Guidesa4/ProgrammersGuide.pdf (Last reached on 01.10.2017).
  • Craven, B.A., Campbell, R.A, Multi-Region Conjugate Heat/Mass Tansfers, http://www.personal.psu.edu/dab143/OFW6/T raining/craven_slides.pdf (Last reached on 01.10.2017).
  • Teruel, F.E., Fogliatto, E., 2013, Numerical simulations of flow, heat transfer and conjugate heat transfer in the backward-facing step geometry, Mecanica, Computacional, vol. 32, Asociation Argentina de Mecanica Computacional 3265–3278
  • Ramsak, M. 2015, Conjugate heat transfer of backward-facing step flow: A benchmark problem revisited, International Journal of Heat and Mass Transfer, 84, 791-799.
  • Kanna, R.P., Das K.M., 2006, Conjugate heat transfer study of backward-facing step flow – A benchmark problem, International Journal of Heat and Mass Transfer, 49, 3929-3941.
  • Nie, J., and Armaly, B, 2003, Reattachment of Three-Dimensional Flow Adjacent to BackwardFacing Step, Journal of Heat Transfer, 125 (3), 422.
  • Barbosa Saldana J., and, N.K., Sarin V., 2005, Numerical Simulation of Mixed Convective Flow Over a Three-Dimensional Horizontal Backward Facing Step, Journal of Heat Transfer, 127, 1027- 1036.
  • Li, A. and Armaly, B.F., 2000, Convection Adjacent to a 3-D Backward-Facing Step," Proceedings of the 2000 (34th) National Heat Transfer Conference, Pittsburgh, PA, August 20 - 22, ASME Paper No. NHTC2000-12301.
  • Cruchaga, M.A., 1998, A study of the backwardfacing step problem using a generalized streamline formulation, Commun Numer Methods Eng., 14, 697–708.
  • Ramsak, M., and Skerget, L., 2004, A highly efficient multidomain BEM for multimillion subdomains, Eng. Anal. Bound. Elem. 43, 76–85.
  • Erturk, E., 2008, Numerical solutions of 2-D steady incompressible flow over a backwardfacing step, Part I: High Reynolds number solutions, Computers and Fluids, 37(6), 633– 655.
  • Zang, Y., Street, R.L., Koseff, J.R., 1994, Grid A Non-staggered. Fractional step method for timedependent incompressible Navier–Stokes equations in curvilinear coordinates, J Comp Phys, 114, 18–33.
  • Grigoriev, M.M., Dargush, G.F., 1999, A polyregion boundary element method for incompressible viscous fluid flows, Int J Numer Methods Eng. 1999, 46, 1127–58.
  • Biagioli, F., 1998, Calculation of laminar flows with second-order schemes and collocated variable arrangement, Int J Numer Methods Fluids, 26, 887–905.
  • Sheu, T.W.H., Tsai, S.F., 1999, Consistent Petrov Galerkin finite element simulation of channel flows, Int. J. Numer. Methods Fluids, 31, 1297–310.
  • Sani, R.L, Gresho, P.M., 1994, Resume and remarks on the open boundary condition mini symposium, Int J Numer Methods Fluids, 18, 983–1008.
  • [11] Barton IE., 1998, Improved laminar predictions using a stabilized time dependent simple scheme, Int. J. Numer. Methods Fluids, 28, 841–57.
  • Barton, I.E., 1997, The entrance effect of laminar flow over a backward facing step geometry, Int. J. Numerical Methods Fluids, 25, 633–44.
  • Kim, J., Moin, P., 1985, Application of a fractional-step method to incompressible Navier–Stokes equations. J Comp Phys., 59, 308–23.
  • Rogers, S.E., Kwak, D., 1991, An upwind differencing scheme for the incompressible Navier–Stokes equations. Appl. Numer. Math., 8, 43–64.
  • Papanastasiou, T.C., Malamataris, N., Ellwood, K., 1992, A new outflow boundary condition, Int. J. Numerical Methods Fluids, 14, 587–608.
  • Gartling, D.K., 1990, A test problem for outflow boundary conditions – flow over a backwardfacing step. Int. J. Numerical Methods Fluids, 11, 953–967.
  • Keskar, J., Lyn, D.A., 1999, Computations of a laminar backward-facing step flow at Re = 800 with a spectral domain decomposition method, Int. J. Numerical Methods Fluids, 29, 411–427.
  • Gresho, P.M., Gartling, D.K., Torczynski, J.R., Cliffe, K.A., Winters, K.H., Garratt, T.J., 1993, Is the steady viscous incompressible twodimensional flow over a backward-facing step at Re = 800 stable? , Int. J. Numerical Methods Fluids 17, 501–541.
  • Cintolesi, C., Nilsson, H., Petronio, A., Armenio V., 2017, Numerical simulation of conjugate heat transfer and surface radiative heat transfer using theP1 thermal radiation model: Parametric study in benchmark cases, International Journal of Heat and Mass Transfer, 107, 959-971.
  • Sosnowski, P., Petronio A., Armenio, V., 2013, Numerical model for thin liquid film with evaporation and condensation on solid surfaces in systems with conjugated heat transfer, International Journal of Heat and Mass Transfer, 66, 382-395.
  • Mensch, A. and Thole, K., 2015, Conjugate heat transfer analysis of the effects of impingement channel height for a turbine blade end wall, Heat and Mass Transfer, 82, 66-77.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi