Topolojik R-Modül Grupoid Örtüleri

Bu makalede ilk olarak bir topolojik R-modül grupoid, topolojik R-modüllerin kategorisinde bir grupoid obje olarak tanımlandı. Daha sonra  , birim elemanı  olan birimli bir diskre topolojik halka ve  topolojik uzayı  evrensel örtüye sahip olan bir topolojik -modül olmak üzere   temel grupoidinin bir topolojik -modül grupoid olduğu gösterildi. Son olarak da    objeleri için N ve  birer evrensel örtüye sahip olacak şekilde ModCov/N kategorisinin bir dolu alt kategorisi UModCov/N ve    objeleri için de N ve   birer evrensel  örtüye  sahip  olacak  şekilde  GdMCov/  kategorisinin  bir  dolu alt kategorisi olan  GdMCov/  tanımlanıp,   ve   kategorilerinin denk kategoriler olduğu ispatlanmıştır.

Topological R-Module Groupoid Coverings

In this paper, firstly a topological R-module groupoid is defined as a groupoid object in the category of topological R-modules. Then it is proved that the fundamental groupoid   is a topological R-module groupoid, where R is a discrete topological ring with identity 1R and N is a topological R-module whose underlying space has a universal covering.  Finally, it is proved that the categories   and   are equivalent, where  UModCov/N is a full subcategory of    in which  for objects   both N and   have universal coverings and  GdMCov/ is the full subcategory of GdMCov/ in which for objects   both and  N have universal  coverings.    

___

  • [1] Brown, R. and Spencer, C.B., 1976. G-groupoids, crossed modules and the fundamental groupoid of a topological group. Proc. Konn. Ned. Akad. v. Wet., 79, 296-302.
  • [2] Brown, R., 1987. From Groups to Groupoids: A Brief Survey. Bull. London Math. Soc., 19, 113-134.
  • [3] Mucuk, O., 1998. Coverings and ring-groupoids. Geor. Math. J., 5, 475-482.
  • [4] Alemdar N. and Mucuk O., 2012. The Liftings of R-Modules to Covering Groupoid. Hacettepe Journal of Mathematics and Statistics; 41(6), 813 - 822.
  • [5] Brown, R. and Mucuk, O., 1994. Covering groups of non-connected topological groups revisited. Math. Proc. Camb. Phill. Soc., 115, 97-110.
  • [6] Mucuk, O., 1993. Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales.
  • [7] İçen, İ., Özcan, F. and Gürsoy, M. H., 2005. Topological group-groupoids and their coverings. Indian Journal of Pure and Applied Mathematics 36(9), 493-502.
  • [8] Brown, R., 2006. Topology and groupoids. BookSurge LLC, North Carolina.
  • [9] Mackenzi, K., 1987. Lie Groupoids and Lie Algebroids in Differantial Geometry. London Math. Soc. Lec. Notes Series. Cambridge uni. Press.
  • [10] Hardy, J.L.P., 1974. Topological groupoids: Coverings and Universal constructions. PhD Thesis, University College of North Wales.
  • [11] Brown, R. and Danesh-Naruie, G., 1975. The fundamental groupoid as a topological groupoid. Proc. Edinburgh Math. Soc., 19 (2), 237-244.
  • [12] Mucuk, O., Şahan,T. and Alemdar, N., 2013. Normality and Quotients in Crossed Modules and Group-groupoids. Appl. Categor. Struct., 23, 415-428.
  • [13] Mucuk, O., Kılıçarslan, B., Şahan, T., Alemdar, N., 2011. Group-groupoid and monodromy groupoid. Topology Appl., 158, 2034-2042.
  • [14] Alemdar N. and Mucuk O., 2013. Existence of covering topological R-Modules. Filomat, 27(6), 1121 - 1126.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: 3
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi