Türk Siyah Çayı, Hazır Kahve ve Türk Kahvesi Örneklerinin Akrilamid İçeriği

Bu çalışmada, Türk ve hazır kahve ile siyah çay örneklerinin akrilamid içerikleri, herhangi bir türevlendirme basamağı olmadan gaz kromatografisi kütle spektrometrisi ile belirlenmiştir. Numune hazırlama yöntemi iki aşamadan oluşmaktadır.  İlk basamak, izolasyon aşamasıdır.  Bu adımda, etanol ile Carrez I ve II çözeltileri örnek karışımlarına eklenmiştir. Katı faz ekstraksiyonu ikinci adımı oluşturmaktadır. Çalışmada, C18 kartuşu temizleme için kullanılmıştır. Tespit ve tayin limiti sırasıyla 1,11 ve 3,66 ng/mL’dir. Sekiz hazır kahve örneğinde 4,48 ile 15,71 µg/kg arasında değişen akrilamid miktarı belirlenmiştir. Yedi Türk kahvesi numunesi ise, 3,89 ile 88,44 µg/kg arasında değişen yüksek bir akrilamid içeriğine sahiptir. On yedi siyah çay numunesinden sadece beş tanesinde, 7,02 ile 19,85 µg/kg arasında değişen miktarda akrilamid tespit edilmiştir.

Acrylamide Content of Turkish Black Tea, Instant and Turkish Coffee Samples

Acrylamide contents of Turkish and instant coffee and black tea samples were determined by the gas chromatography mass spectrometry without any derivatization step in this present study. The sample preparation method included two primary clean up steps. In the first step, ethanol and solutions of Carrez I and II were added into sample mixtures. The second step with solid-phase extraction C18 cartridge was carried out for clean-up. The limit of detection and limit of quantification were 1.11 and 3.66 ng/mL, respectively. The quantification level of acrylamide was determined in eight instant coffee samples in the range between 4.48 and 15.71 µg/kg while seven Turkish coffee samples had a high content of acrylamide ranging from 3.89 to 88.44 µg/kg. Acrylamide was detected in only five samples from seventeen black tea samples at a quantification level between 7.02 and 19.85 µg/kg.

___

  • [1] Mojska, H., Gielecinśka, I., Szponar, L., Ołtarzewski, M. 2010. Estimation of the dietary acrylamide exposure of the Polish population. Food and Chemical Toxicology, 48, 2090–2096. https://doi.org/10.1016/j.fct.2010.05.009.
  • [2] Şenyuva, H.Z., Gökmen, V. 2005. Study of acrylamide in coffee using an improved liquid chromatography mass spectrometry method: Investigation of colour changes and acrylamide formation in coffee during roasting. Food Additives & Contaminants, 22(3), 214–220. https://doi.org/10.1080/02652030500109834.
  • [3] Mottram, D.S., Wedzicha B.L., Dodson A.T. 2002. Acrylamide is formed in Maillard reaction. Nature, 419, 448-449. https://doi.org/10.1038/419448a.
  • [4] Scientific Report of EFSA: Update on acrylamide levels in food from monitoring years 2007 to 2010. 2012. European Food Safety Authority EFSA Journal, 10(10), 2938. https://www.wkof.nl/sites/default/files/EFSA.pdf.
  • [5] International Agency for Research on Cancer. 1997. IARC Monographs on the evaluation of carcinogenic risks to humans, Vol. 60, Lyon 1994, updated 1997.
  • [6] Johnson, K.A., Gorzinski, S.J., Bodner, K.M., Campell, R.A., Wolf, C.H., Friedman, M.A., Mast, R.W. 1986. Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats. Toxicology and Applied Pharmacology, 85(2), 154–68. https://doi.org/10.1016/0041-008X(86)90109-2.
  • [7] Neumann, F. 1991. Early indicators for carcinogenesis in sex-hormone-sensitive organs. Mutation Research, 248, 341–56. https://doi.org/10.1016/0027-5107(91)90067-X.
  • [8] Alison, R.H., Capen, C.C., Prentice, D.E. 1994. Neoplastic lesions of questionable significance to humans. Toxicologic Pathology, 22, 179–86. http://dx.doi. org/ 10.1177/019262339402200211.
  • [9] Friedman, M.A., Dulak, L.H., Stedham, M.A. 1995. A lifetime oncogenicity study in rats with acrylamide. Fundamental and Applied Toxicology, 27, 95–105. https://doi.org/10.1093/toxsci/27.1.95.
  • [10] Ben-Jonathan, N., LaPensee, C.R., La Pensee, E.W. 2008. What can we learn from rodents about prolactin in humans. Endocrine Reviews, 29, 1–41. https://doi.org/10.1210/er.2007-0017.
  • [11] Beland, F.A., Mellick, P.W., Olson, G.R., Mendoza, M.C., Marques, M.M., Doerge, D.R. 2013. Carcinogenicity of acrylamide in B6C3F (1) mice and F344/N rats from a 2-year drinking water exposure. Food and Chemical Toxicology, 51, 149–59. https://doi.org/10.1016/j.fct.2012.09.017.
  • [12] Hashimoto, A. 1976. Improved method for the determination of acrylamide monomer in water by means of gas - liquid chromatography with an electron- capture detector. Analyst, 101, 932-938.
  • [13] Weideborg, M., Källqvist, T., Odegård, K.E., Sverdrup, L.E., Vik, E.A. 2001. Environmental risk assessment of acrylamide and methylolacrylamide from a grouting agent used in the tunnel construction of Romeriksporten, Norway. Water Research, 35, 2645-2652. https://doi.org/10.1016/S0043-1354(00)00550-9.
  • [14] Rosen, J., Hellenäs, K.E. 2002. Analysis of acrylamide in cooked foods by liquid chromatography tandem mass spectrometry. Analyst, 127, 880–882.
  • [15] Nemoto, S., Takatsuki, S., Sasaki, K., Maitani, T. 2002. Determination of acrylamide in foods by GC/MS using 13C-labeled acrylamide as an internal standard. Food Hygienic Society, 43, 371–376.
  • [16] Ono, H., Chuda, Y., Ohnishi-Kameyama, M., Yada, H., Ishizaka, M., Kobayashi, H., Yoshida, M. 2003. Analysis of acrylamide by LC-MS/MS and GC-MS in processed Japanese foods. Food Additives & Contaminants, 20, 215–220. https://doi.org/10.1080/0265203021000060887.
  • [17] Pittet, A., Peŕisset, A., Oberson, J.M. 2004. Trace level determination of acrylamide in cereal-based foods by gas chromatography-mass spectrometry. Journal of Chromatogrphy A, 1035, 123–130. https://doi.org/10.1016/j.chroma.2004.02.037.
  • [18] Wenzl, T., Beatriz de la Calle, M., Anklam, E. 2003. Analytical methods for the determination of acrylamide in food products: A review. Food Additives & Contaminants, 20(10), 885–902. https://doi.org/10.1080/02652030310001605051.
  • [19] Soares, C., Cunha, S., Fernandes, J. 2006. Determination of acrylamide in coffee and coffee products by GC-MS using an improved SPE clean up. Food Additives & Contaminants, 23(12), 1276-1282. https://doi.org/10.1080/02652030600889608.
  • [20] Agilent Technologies, Inc. 2014. 5991-5297EN Procedure. Agilent Technologies, Inc. 2014 Published in USA, October, 2014 5991-5297EN. https://www.agilent.com/cs/library/applications/5991-5297EN_v2.pdf.
  • [21] Liu, J., Zhao, G., Yuan, Y., Chen, F., Hu, X. 2008. Quantitative analysis of acrylamide in tea by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Food Chemistry, 108, 760–767. https://doi.org/10.1016/j.foodchem.2007.11.015.
  • [22] Russo, M.V., Avino, P., Centola, A., Notardonato, I., Cinelli G. 2014. Rapid and simple determination of acrylamide in conventional cereal-based foods and potato chips through conversion to 3-[bis(trifluoroethanoyl)amino]-3-oxopropyl trifluoroacetate by gas chromatography coupled with electron capture and ion trap mass spectrometry detectors. Food Chemistry, 146, 204-211. https://doi.org/10.1016/j.foodchem.2013.09.050.
  • [23] Mizukami, Y., Kohata, K., Yamaguchi, Y., Hayashi, N., Sawai, Y., Chuda, Y., Ono, H., Yada, H., Yoshida, M. 2006. Analysis of acrylamide in green tea by gas chromatography−mass spectrometry. Journal of Agricultural and Food Chemistry, 54(19), 7370–7377. https://doi.org/10.1021/jf061029a.
  • [24] Yoshida, M., Ono, H., Chuda, Y., Yada, H., Ohnishi-Kameyama, M., Kobayashi, H., Ohara-Takada, A., Matsuura-Endo, C., Mori, M., Hayashi, N., Yamaguchi, Y. 2005. Acrylamide in Japanese processed foods and factors affecting acrylamide level in potato chips and tea. Advances in Experimental Medicine and Biology, 561, 405-413. . https://doi.org/10.1007/0-387-24980-X_31.
  • [25] Alves, R.C., Soares, C., Casal, S., Fernandes, J.O., Beatriz, M., Oliveira, P.P. 2010. Acrylamide in espresso coffee: Influence of species, roast degree and brew length. Food Chemistry, 119, 929–934. https://doi.org/10.1016/j.foodchem.2009.07.051.
  • [26] Bagdonaite, K., Derler, K., Murkovi, M. 2008. Determination of crylamide during roasting of coffee. Journal of Agricultural and Food Chemistry, 56(15), 6081–6086. https://doi.org/10.1021/jf073051p.
  • [27] Andrzejewski, D., Roach, J.A.G., Gay, M.L., Musser, S.M. 2004. Analysis of coffee for the presence of acrylamide by LC-MS/MS. Journal of Agricultural and Food Chemistry, 52, 1996-2002. https://doi.org/10.1021/jf0349634.
  • [28] Ölmez, H., Tuncay, F., Özcan, N., Demirel, S. 2008. A survey of acrylamide levels in foods from the Turkish market. Journal of Food Composition and Analysis, 21(7), 564–568. https://doi.org/10.1016/j.jfca.2008.04.011.
  • [29] Lantz, I., Ternite, R., Wilkens, J., Hoenicke, K., Guenther, H., Van der Stegen, G. 2006. Studies on acrylamide levels in roastings, storage and brewing of coffee. Molecular Nutrition & Food Research, 50, 1039–1046. https://doi.org/10.1002/mnfr.200600069.
  • [30] Seal, C.J., de Mul, A., Eisenbrand, G., Haverkort, A.J., Franke, K., Lalljie, S.P.D, Mykkänen, H., Reimerdes, E., Scholz, G., Somoza, V., Tuijtelaars, S., van Boekel, M., van Klaveren, J., Wilcockson, S.J., Wilms, L. 2008. Risk-benefit considerations of mitigation measures on acrylamide content of foods – A case study on potatoes, cereals and coffee. British Journal of Nutrition, 99, S1-S46. https://doi.org/10.1017/S0007114508965314.
  • [31] Viani, R., Petracco, M. 2017. Part II: Beverages. pp. 281-311. Elvars, B., e.d. 2017. Ullmann's Food and Feed, John Wiley & Sons, Germany, 1576p.
  • [32] Türk Kahvesi Kültürü ve Araştırmaları Derneği. http://www.turkkahvesidernegi.org/index.php?icerik=kahve-hakkinda&ttkad=menuactive. (Erişim Tarihi: 14.04.2019).