Gölge Sönümlenmesi Ko¸sulları Altında Aynı Anda Olunan Ortamda Kablosuz Medikal Implant Haberle¸sme Sistemleri için Daha Az Giri¸sim Olu¸sturan E¸sik Uzaklık Belirleme

Ileride, özellikle kablosuz medikal haberle¸sme trafiginin çok yo ˘ gun oldu ˘ gu has- ˘ tanelere yakın bölgelerde, önemli giri¸sim problemleri ile fazlaca kar¸sıla¸sılabilecektir. Bu giri¸simlerin, kablosuz implant cihazlarının hatalı i¸slev yerine getirerek hastalara zarar vermesi olasıdır. Bu çalı¸smada, MICS ve MetAids kullanıcılarının aynı yerde aynı anda yogun olarak bulunması durumunda, kablosuz medikal implant kullanıcılarına daha az ˘ giri¸sim olu¸sturmak maksadıyla, gölge sönümlenmesi ko¸sulları altında kablosuz medikal implant haberle¸sme sistemleri için e¸sik uzaklık belirleme yöntemi önerilmi¸stir. Bu yöntemde, MICS sistemlere olan giri¸sim etkilerini minimize etmek için güvenlik aralıgı˘ hesaplamaları kullanılarak, [1]’e göre olan e¸sik gücü, fazladan uzaklık payı konarak a¸sagıya çekilir. Çünkü [ ˘ 1]’e göre olan e¸sik gücünün hemen altındaki alınan sinyal gücü, "konu¸smadan önce dinle" teknigi uygulansa bile MICS sistemleri için çok daha fazla ˘ giri¸sime neden olmaktadır.

Determining Threshold Distance Providing Less Interference for Wireless Medical Implant Communication Systems in Coexisting Environments under Shadow Fading Conditions

Important interference problems will be able to be encountered especially close areas to the hospitals where wireless implantable medical systems’ communication traffic occurs heavily in near future. It is possible that these interferences could cause wireless implant devices to malfunction and harmful effects on patients. In this study, it is proposed to determine threshold distance in order to get less interference for wireless implantable medical systems under shadow fading conditions where MICS band and MetAids band users coexist intensely simultaneously. In this method, threshold power according to the [1] is pulled down by adding extra distance margin in order to minimize the interference effects to the MICS systems using confidence interval calculations. Because received signal strength just below the monitoring threshold power according to the [1] brings about much more interferences for the MICS systems even if listen-before-talk technique is applied.

___

  • Seidel, S., Rappaport, T. 1992. 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings Antennas and Propagation, IEEE Transactions on, 40, 207-217
  • ITU-R Recommendation SA.1165-2. 1995-1997- 2006. Technical characteristics and performance criteria for systems in the meteorological aids service in the 403 MHz and 1 680 MHz bands
  • Sutton, B., Stadnik, P., Nelson, J., Stotts, L. 2007. Probability of Interference between LP-LDC and LBT MICS Implants in a Medical Care Facility 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 6721-6725
  • Johansson, A. 2004. Performance of a radio link between a base station and a medical implant utilising the MICS standard Engineering in Medicine and Biology Society, IEMBS ’04. 26th Annual International Conference of the IEEE, 1, 2113-2116
  • ECC std. 2006. Coexistence between ultra low power active medical implants devices (ULP-AMI) and existing radiocommunication systems and services in the frequency bands 401 to 402 mHz and 405 to 406 mHz
  • European Telecommunications Standard Institute, Electromagnetic compatibility and Radio spectrum Matters (ERM). 2007. Radio equipment in the frequency range 402 MHz to 405 MHz for Ultra Low Power Active Medical Implants and Accessories; Part 2: Harmonized EN covering essential requirements of article 3.2 of the R TTE Directive, ETSI EN 301 839-2 V1.1.1
  • Australian Communication Authority Std. 2003. Planning for Medical Implant Communications Systems (MICS) & Related Devices
  • ITU-R Recommendation RS.1346. 1998. Sharing between the meteorological aids service and medical implant communication systems (MICS) operating in the mobile service in the frequency band 401–406 MHz
  • Gollakota, S., Hassanieh, H., Ransford, B.; Katabi, D., Fu, K. 2011. They Can Hear Your Heartbeats: Noninvasive Security for Implantable Medical Devices SIGCOMM Comput. Commun. Rev., ACM, 41, 2-13
  • Pournaghshband, V., Sarrafzadeh, M., Reiher, P. Godara, B., Nikita, K. (Eds.). 2013. Securing Legacy Mobile Medical Devices Wireless Mobile Communication and Healthcare, Springer Berlin Heidelberg, 61, 163-172
  • Hei, X., Du, X., Lin, S., Lee, I., Sokolsky, O. 2015. Patient Infusion Pattern based Access Control Schemes for Wireless Insulin Pump System. IEEE Transactions on Parallel and Distributed Systems, 26, 3108-3121
  • Lee, A., Wang, R., Farajidavar, A. 2016. A wireless system for gastric slow wave acquisition and gastric electrical stimulation. IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), 49-51
  • Guo, C., Zhang, H., Ma, Z., Zhang, J., Lin, J., Zhang, R. 2015. An inductive wireless telemetry circuit with OOK modulation for implantable cardiac pacemakers. IEEE 11th International Conference on ASIC (ASICON), 1-4
  • Yan, H., Wu, D., Liu, Y., Wang, D., Hou, C. 2010. A low-power CMOS ASK clock and data recovery circuit for cochlear implants. 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, 758-760
  • Lee, H. M., Park, H., Ghovanloo, M. A. 2013. PowerEfficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation IEEE Journal of SolidState Circuits, 48, 2203-2216
  • FCC Standard. 2002. MICS Medical Implant Communication Services, FCC 47CFR95.601–95.673 Subpart E/I Rules for MedRadio Services