Termal Olarak Oksitlenmiş CoCrMo Alaşımının Aşınma Davranışı Üzerine Oksidasyon Süresinin Etkisi

CoCrMo alaşımı, %100 O2 gazı ortamında, 850°C'de, 3 ve 5 saat süre ile termal oksitlenmiştir. İşlemsiz ve işlem görmüş numunelerin yapısal, mekanik ve aşınma özelliklerin tespit edilmesi için XRD, SEM, mikro sertlik ve pim-disk aşınma test cihazları kullanılmıştır. Sonuçlar, oksitlenmiş numunelerin aşınma dirençlerinin, işlem görmemiş CoCrMo alaşımından daha iyi olduğunu göstermiştir. Ayrıca, oksitlenmiş numunelerin aşınma dirençleri, işlem süresi arttıkça (3 saatten 5 saate kadar) artmıştır.

Effect of Oxidation Time on Wear Behaviour of Thermally Oxidized CoCrMo Alloy

CoCrMo alloy has been oxidized for 3 and 5h at the temperature of 850°C with 100% O2 gas by thermal oxidation. The XRD, SEM, microhardness and ball-on-disc wear test devices were used to find out the structure, mechanical and wear properties of untreated and treated specimens. Outcomes showed wear resistance of oxidized specimens were became better than untreated CoCrMo alloy. Also, wear resistance of oxidized specimens improved with increased processing time (from 3h to 5h) increased.

___

  • [1] Aslan, M., Çomakli, O., Yazici, M., Yetim, A.F., Bayrak, Ö., Çelik, A., 2018. The Effect of Plasma Oxidation and Nitridation on Corrosion Behavior of CoCrMo Alloy in SBF Solution. Surface Review and Letters, 25(08), 1950024.
  • [2] Çelik, A., Aslan, M., Yetim, A.F., Bayrak, Ö., 2014. Wear behavior of plasma oxidized CoCrMo alloy under dry and simulated body fluid conditions. Journal of Bionic Engineering, 11(2), 303-310.
  • [3] Dong, H., Bell, T., 2000. Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment. Wear, 238(2), 131-137.
  • [4] Kumar, S., Narayanan, T.S., Raman, S.G.S., Seshadri, S.K., 2009. Thermal oxidation of CP-Ti: Evaluation of characteristics and corrosion resistance as a function of treatment time. Materials Science and Engineering: C, 29(6), 1942-1949.
  • [5] Güleryüz, H., Çimenoğlu, H., 2004. Effect of thermal oxidation on corrosion and corrosion–wear behaviour of a Ti–6Al–4V alloy. Biomaterials, 25(16), 3325-3333.
  • [6] Kumar, S., Narayanan, T.S., Raman, S.G.S., Seshadri, S.K., 2010. Thermal oxidation of CP Ti—An electrochemical and structural characterization. Materials Characterization, 61(6), 589-597.
  • [7] Arslan, E., Totik, Y., Demirci, E., Alsaran, A., 2010. Influence of surface roughness on corrosion and tribological behavior of CP-Ti after thermal oxidation treatment. Journal of Materials Engineering and Performance, 19(3), 428-433.
  • [8] Shih, C.C., Shih, C.M., Su, Y.Y., Su, L.H.J., Chang, M.S., Lin, S.J., 2004. Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications. Corrosion Science, 46(2), 427-441.
  • [9] Ayu, H.M., Daud, R., Shah, A., Faiz, M.M., Hazwan, H.M., Salwani, M.S., Tomadi, S.H., Reza, M.S., 2017. Thermal oxidation process improved corrosion in cobalt chromium molybdenum alloys. International Journal of Advanced and Applied Sciences, 4(9), 144-149.
  • [10] Çomaklı, O., Yazıcı, M., Yetim, T., Yetim, A.F., Çelik, A., 2018. Effect of Ti amount on wear and corrosion properties of Ti-doped Al2O3 nanocomposite ceramic coated CP titanium implant material. Ceramics International, 44(7), 7421-7428.