Örgülü Olmayan Elektrospin PAN Nanofiber Malzemenin Epoksi Kompozitlerin Mekanik ve Termal Özelliklerine Etkisi

Bu çalışmada elektrospin metodu ile üretilmiş farklı sayılardaki nanofiber takviyeli tabakalı epoksi kompozitlerin mekanik ve termal özellikleri araştırılmıştır. Elektrospin işlemi için ağırlıkça %10 oranında poliakrilonitril (PAN) ve N,N dimetilformamid (DMF) çözeltisi kullanılmıştır. Elde edilen nanofiber çapları 380-420 nm aralığındadır. Üretilen nanofiber tabaka kalınlığı ortalama 200 μm’dir. Tabakalı kompozit plakaları elde etmek için özel kalıplar hazırlanmıştır. Çekme deney sonuçları nanofiber tabaka kullanımının çekme kuvvetini saf epoksiye oranla % 34.54 arttırdığı ancak uzamayı saf epoksiye oranla % 8.87 azalttığı belirlenmiştir. Numunelerin kırılma yüzeyleri optik ve taramalı elektron mikroskopu (SEM) ile incelenmiştir. Üretilen nanofiber tabakalı kompozitlerin termal özellikleri termal gravimetrik analiz (TGA) ve diferansiyel taramalı kalorimetre (DSC) analizleri ile belirlenmiştir. Camsı geçiş sıcaklığının PAN tabaka sayısı arttıkça buna paralel olarak arttığı ve 86 C ye kadar çıktığı, termal kararlılıkta ise PAN tabakalarının etkisinin çok fazla olmadığı görülmüştür.

The Effect of Nonwoven Electrospun PAN Nanofiber Mat on Mechanical and Thermal Properties of Epoxy Composites

In this study mechanical and thermal properties of epoxy resin reinforced withdifferent numbers of nanofiber layers which produced with electrospinning method wasinvestigated. Solution of 10 wt% of polyacrylonitrile (PAN) in N,N-dimethylformamide(DMF) was used for electrospinning. The diameters of the obtained nanofibers were in therange of 380-420 nm. The average thickness of the produced nanofiber layer was about200 μm. The special molds were prepared to produce the laminated composite plates. Thetensile tests show that the using of nanofiber PAN layers increase the tensile force 34.54%and decrease the elongation 8.87% in comparison with neat epoxy. The fracture surfaces ofthe specimens were inspected by using optical and scanning electron microscopy (SEM).The thermal properties of the nanofiber layered composites were determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis. It wasobserved that the glass transition temperature increased parallel to this as the number ofPAN layers increased and rose up to 86ᵒC, while the thermal stability did not show mucheffect of PAN layers.

___

  • Ueki, T., Nishijima, S., Izumi, Y. 2005. Designing of epoxy resin systems for cryogenic use. Cryogenics, 45(2), 141–8.
  • Kang, S., Hong, SI., Choe, CR., Park, M., Rim, S., Kim, J. 2001. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer, 42(3), 879–87.
  • Shan, X., Huang, C., Yang, H., Wu, Z., Li, J., Huang, R., et al. 2015. The thermal expansion and tensile properties of nanofiber-ZrW2O8 reinforced epoxy resin nanocomposites. Phys Procedia, 67, 1056–61.
  • Chen, IH., Wang, CC., Chen, CY. 2010. Preparation of carbon nanotube (CNT) composites by polymer functionalized CNT under plasma treatment. Plasma Process Polymers, 7(1), 59– 63.
  • Li, J., Wu, Z., Huang, C., Liu, H., Huang, R., Li, L. 2014. Mechanical properties of cyanate ester/epoxy nanocomposites modified with plasma functionalized MWCNTs. Composites Science and Technology, 90,166–73.
  • Huang, ZM., Zhang, YZ., Kotaki, M., Ramakrishna, S. 2003. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–53.
  • Palazzetti, R., Zucchelli, A., Gualandi, C., Focarete, ML., Donati, L., Minak, G., et al. 2012. Influence of electrospun Nylon 6,6 nanofibrous mats on the interlaminar properties of Gr-epoxy composite laminates. Composite structures, 94(2), 571–9.
  • Kim, JS., Reneker, DH. 1999. Mechanical properties of composites using ultrafine electrospun fibers. Polymer Composites, 20(1), 124–31.
  • Borkar, S., Gu, B., Dirmyer, M., Delicado, R., Sen, A., Jackson, BR., et al. 2006. Polytetrafluoroethylene nano/microfibers by jet blowing. Polymer, 47(25), 8337–43.
  • Ellison, C.J, Phatak, A., Giles, DW., Macosko, CW., Bates, FS. 2007. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer, 48(11), 3306–16.
  • Wang, J., Langhe, D., Ponting, M., Wnek, GE., Korley, LT., Baer, E. 2014. Manufacturing of polymer continuous nanofibers using a novel coextrusion and multiplication technique. Polymer, 55(2), 673–85.
  • Zhang, X., Zhu, J., Haldolaarachchige, N., Ryu, J., Young, D. P., Wei, S., Guo, Z. 2012. Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties. Polymer, 53(10), 2109-2120.
  • Zhao, S., Wu, X., Wang, L., & Huang, Y. 2004. Electrospinning of ethyl–cyanoethyl cellulose/tetrahydrofuran solutions. Journal of Applied Polymer Science, 91(1), 242-246.
  • Yang, F., Murugan, R., Wang, S., Ramakrishna, S. 2005. Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 26(15), 2603-2610.
  • Bhardwaj, N., Kundu, S. C. 2010. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347.
  • Jeun, JP., Kim, YK., Lim, YM., Choi, JH., Jung, CH KP., Yc, N. 2007. Electrospinning of Poly (Llactide- co-D, L-lactide). Journal of Industrial and Engineering Chemistry, 13(4), 592-596.
  • Demir, MM., Yilgor, I., Yilgor, E., Erman, B. 2002. Electrospinning of polyurethane fibers. Polymer, 43(11), 3303-3309.
  • Zhu, J., Wei, S., Rutman, D., Haldolaarachchige, N., Young, DP., Guo, Z. 2011. Magnetic polyacrylonitrile-Fe@ FeO nanocomposite fibers-Electrospinning, stabilization and carbonization. Polymer, 52(13):2947–2955.
  • Zhu, J., Chen, M., Qu, H., Wei, H., Guo, J., Luo, Z., Guo, Z. 2014. Positive and negative magnetoresistance phenomena observed in magnetic electrospun polyacrylonitrile-based carbon nanocomposite fibers. Journal of Materials Chemistry C, 2(4), 715-722.
  • Tomczak, N., Gu, S., Han, M., van Hulst, NF., Vancso, G.J. 2006. Single light emitters in electrospun polymer nanofibers: Effect of local confinement on radiative decay. European polymer journal, 42(10), 2205-2210.
  • Qu, H., Wei, S., Guo, Z. 2013. Coaxial electrospun nanostructures and their applications. Journal of Materials Chemistry A, 1(38), 11513-11528.
  • Almuhamed, S., Khenoussi, N., Bonne, M., Schacher, L., Lebeau, B., Adolphe, D., Brendlé, J. 2014. Electrospinning of PAN nanofibers incorporating SBA-15-type ordered mesoporous silica particles. European polymer journal, 54, 71-78.
  • Shivakumar, K., Lingaiah, S., Chen, H., Akangah, P., Swaminathan, G., Russell, L. 2009. Polymer nanofabric interleaved composite laminates. AIAA journal, 47(7), 1723-1729.
  • Sihn, S., Kim, RY., Huh, W., Lee, KH., Roy, AK. 2008. Improvement of damage resistance in laminated composites with electrospun nanointerlayers. Composites Science and Technology, 68(3-4), 673-683.
  • Liu, L., Huang, ZM., He, CL., Han, X. 2006. Mechanical performance of laminated composites incorporated with nanofibrous membranes. Materials Science and Engineering: A, 435, 309-317.
  • Zhang, J., Lin, T., Wang, X. 2010. Electrospun nanofibre toughened carbon/epoxy composites: Effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness. Composites Science and Technology, 70(11), 1660-1666.
  • Lin, S., Cai, Q., Ji, J., Sui, G., Yu, Y., Yang, X., Deng, X. 2008. Electrospun nanofiber reinforced and toughened composites through in situ nanointerface formation. Composites Science and Technology, 68(15-16), 3322-3329.
  • Akangah, P., Lingaiah, S., Shivakumar, K. 2010. Effect of Nylon-66 nano-fiber interleaving on impact damage resistance of epoxy/carbon fiber composite laminates. Composite Structures, 92(6), 1432-1439.
  • Erdal, MO., Yazman, Ş., Gemi, L., Yapıcı, A. 2015. Çok Katmanlı Nanoelyaf Takviyesinin Epoksi Reçinenin Mekanik Özelliklerine Etkisinin İncelenmesi. Mühendislikte Yeni Teknolojiler Sempozyumu, 22-23 Ekim, Bayburt, 30-35.
  • Jin, F-L., Ma, C-J., Park, S-J. 2011. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Materials Science and Engineering: A, 528(29-30), 8517-8522.
  • Yapici, A., Özkan, V., Yıldız, M., Erdal, M., Gemi, L., Yazman, Ş. 2016. The Effect of Nylon 6.6 Nanofiber Layers on Mechanical Properties of Epoxy. The International Journal of Engineering and Science, 5(11), 86-89.
  • Yapici, A., Özkan, V., Yıldız, M., Erdal, M., Gemi, L., Yazman, Ş. 2016. The nylon 6.6 nanofiber layers’ effect on mechanical properties of epoxy. 12th International Nanoscience and Nanotechnology Conference, 03-05 June Kocaeli, 152.
  • Tait, J., Davies, G., McIntyre, R., Yarwood, J. 1997. FTIR-ATR studies of interfacial interactions in epoxy resin/polymer laminate structures. Vibrational spectroscopy, 15(1), 79-89.
  • Nacimiento, F., Alcántara, R., González, JR., Tirado, JL. 2012. Electrodeposited polyacrylonitrile and cobalt-tin composite thin film on titanium substrate. Journal of The Electrochemical Society, 159(7), A1028-A1033.
  • Goyat, M., Suresh, S., Bahl, S., Halder, S., & Ghosh, P. 2015. Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite. Materials Chemistry and Physics, 166, 144-152.
  • Gemi, L., Yazman, Ş., Uludağ, M., Dışpınar, D. 2017. The effect of 0.5 wt% additions of carbon nanotubes & ceramic nanoparticles on tensile properties of epoxy-matrix composites: A comparative study. Materials Science and Nanotechnology, 1(2), 15-22.
  • Yazman, Ş., Gemi, L., Uludağ, M., Dışpınar, D. 2015. Investigation of The Effect of Carbon Nanotube Ratio on The Wear Behavior of Carbon Nanotube/Epoxy Nanocomposites. International Journal of Enhanced Research in Science, Technology & Engineering, 4(7), 201-207.
  • Güneş, E., Erdal, M., Gemi, L. 2017. The effect of nanofiber on the biological traits of Drosophila Melanogaster. Sakarya University Journal of Science, 26(6), 1612-1617.
  • Morkavuk, S., Köklü, U., Bağcı, M., Gemi, L. 2018. Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: A comparative study. Composites Part B: Engineering, 147, 1-11.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi